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Chapter 1

Introduction

Figure 1-1: Simulation of a 
ue pipe that is 20 cm long, 1:34 cm wide, and produces
tones near 400 and 1100 cycles per second. Air is blown through the 
ue at 1200 cm/s.
Iso-vorticity contours are shown at 25 milliseconds after startup.

1.1 Thesis outline

I have considered the problem of simulating the hydrodynamics and the acoustic waves

inside wind musical instruments such as the organ 
ue pipe. I have attacked this

problem by developing suitable local-interaction algorithms and a parallel simulation

system on a cluster of non-dedicated workstations. Previous attempts at this problem

have been frustrated for two reasons: First, the modeling of acoustic waves requires

small integration time steps which make the simulation very compute-intensive. Sec-

ond, the simulation of subsonic viscous compressible 
ow at high Reynolds numbers

11



CHAPTER 1. INTRODUCTION 12

is susceptible to slow-growing numerical instabilities which are triggered by high-

frequency acoustic modes.

Below, I outline the main results of my thesis, and I explain how my work �ts in

with previous work in computational 
uid dynamics and in parallel computing. My

contributions belong to three categories as follows:

� Physical applications: I demonstrate the �rst simulations of 
ue pipes ever-to-

be-performed which model both hydrodynamics and acoustic waves together.

Physical measurements of the acoustic signal of various 
ue pipes show good

agreement with the simulations.

� Numerical methods: I mitigate the problem of numerical instabilities by em-

ploying a fourth-order arti�cial-viscosity �lter. This �lter can be used both

with the lattice Boltzmann method and also with a compressible �nite di�er-

ence method. Further, I develop a technique for accurate boundary conditions

and initial conditions for the lattice Boltzmann method, and I demonstrate the

second-order accuracy of the lattice Boltzmann method.

� Parallel computing: I handle the problem of compute-intensive requirements by

developing a parallel simulation system on a cluster of non-dedicated worksta-

tions. The system is based on local-interaction methods, small communication

capacity, and automatic migration of parallel processes from busy hosts to free

hosts. Typical simulations achieve 80% parallel e�ciency (speedup/processors)

using 20 HP-Apollo workstations.

Later in this chapter, I present a few representative simulations and physical mea-

surements of the sound generated by a soprano recorder 
ue pipe. More simulations

and measurements can be found in chapter 7. Between here and chapter 7, the tech-

nical crux of my thesis is presented. Speci�cally, the equations of 
uid mechanics

and 
uid acoustics are reviewed in chapter 2. Numerical methods for simulating 
uid
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ow are analyzed in chapters 3 { 5. Parallel computing on a cluster of non-dedicated

workstations is discussed in chapter 6.

Regarding numerical methods, I emphasize the lattice Boltzmann method because

it is a new approach for simulating 
uids which is promising, and is still undergoing

re�nements and improvements. I develop a technique for accurate initial and bound-

ary conditions for the lattice Boltzmann method which is very important in practical

situations. 1 Further, I demonstrate experimentally that the discretization error of

the lattice Boltzmann method decreases quadratically with �ner resolution both in

space and in time. My results on the lattice Boltzmann method have been published

in Skordos [48], and have helped to bring the lattice Boltzmann method from the

physicists' world to the engineer's world.

Apart from the lattice Boltzmann method, I examine two di�erent kinds of ex-

plicit �nite di�erence methods. In chapter 4, I compare the lattice Boltzmann method

against an incompressible �nite di�erence method which neglects the acoustic waves

and simulates incompressible 
ow. In chapters 6 and 7, I compare the lattice Boltz-

mann method against a compressible �nite di�erence method which solves the com-

pressible Navier Stokes equations. The lattice Boltzmann method appears to model

acoustic waves slightly more accurately than the compressible �nite di�erence method.

However, my comparisons are not complete, and further work is needed to understand

better the di�erences between the two approaches.

In general, I can say that the lattice Boltzmann approach has better stability

properties than explicit �nite di�erence methods because the lattice Boltzmann ap-

proach is based on relaxation as opposed to di�erencing operations. The ability of the

lattice Boltzmann method to model acoustic waves well, which I mentioned above,

is probably related to the stability properties and the smooth behavior of the lattice

Boltzmann method for disturbances of small wavelength. A limitation of the lattice

1My technique also makes possible multigrids and interpolation between di�erent grids for the

lattice Boltzmann method (see section 4.6.2); however, I have not tested multigrids in actual simu-

lations yet.
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Boltzmann approach is that it can not handle arbitrary non-uniform grids. This limi-

tation may be overcome to some extent by joining grids of di�erent resolution (see my

technique for boundary conditions), but this is a subject for future research. Here, I

employ uniform grids only because they are simple to program, to understand, and

to use in parallel computation.

1.2 Unexplored area of 
uid dynamics

The simulation of 
uid 
ow is very important for engineering and science because


uid phenomena can be found everywhere, in the sky, in the sea, inside engines,

inside our bodies. Thus, there is great motivation for simulating 
uids. On the other

hand, the simulation of 
uid phenomena is di�cult because the equations of motion

(known as the Navier Stokes equations) are nonlinear partial di�erential equations

that exhibit a wide range of dynamical behavior and have no exact solutions in most

cases. In addition, the simulation of 
uid phenomena requires large amounts of data

to represent the geometry and the dynamics of the 
ow accurately. Consequently,

computers are challenged to their limits when simulating 
uid 
ow, and there is a

never-ending demand for increased computing power to enable �ner and more realistic

simulations.

So far, the �eld of computational 
uid dynamics has succeeded in simulating


ows of many di�erent types: supersonic, transonic, 
ow through porous media,

mixtures of 
uids, free surface 
ows. In addition, progress has been made towards

faithful simulation of turbulent 
ows and 
ows with chemical reactions. Yet, these

achievements are only the beginning of a long exploration. As computer technology

improves and new algorithms are discovered, more 
uid phenomena will succumb to

simulation. For instance, 
uid phenomena that include two di�erent time-scales, slow-

moving hydrodynamics and fast-moving acoustic waves, are now possible to simulate

numerically using parallel computers, as I demonstrate in my thesis. This is an area
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of computational 
uid dynamics that has remained unexplored until now.

The generation of sound inside wind musical instruments such as the organ, the

recorder, and the 
ute is a phenomenon which depends on the interaction between

hydrodynamics and acoustic waves. Speci�cally, when a jet of air impinges a solid

obstacle in the vicinity of a cavity, the jet begins to oscillate strongly and produces

acoustic waves. The acoustic waves re
ect o� the cavity, and return to interact with

the jet according to a complex nonlinear feedback cycle. Similar phenomena that de-

pend on the interaction between acoustic waves and jets occur in human whistling and

in voicing of fricative consonants (Shadle85 [46]). The computer simulation of these

phenomena provides a precise way of studying the phenomena and experimenting

with di�erent parameters.

The main di�culties that have prevented simulations of subsonic 
ow inside 
ue

pipes arise from the fact that the subsonic 
ow involves two di�erent time-scales,

hydrodynamics and acoustic waves, which interact with each other nonlinearly. On

the one hand, the simulation is compute-intensive because the integration time step

must be very small to follow the acoustic waves (section 3.2.1). On the other hand, the

simulation of compressible 
ow is susceptible to slow-growing numerical instabilities

when the Reynolds number is large. I handle the compute-intensive requirements

by developing a parallel simulation system on a cluster of workstations. In addition,

I mitigate the numerical instabilities by employing a fourth-order arti�cial-viscosity

�lter (chapter 5) in combination with the lattice Boltzmann method and also in

combination with a compressible �nite di�erence method.

The traditional approach of simulating subsonic 
ow is to approximate the sub-

sonic 
ow with a perfectly incompressible 
ow, as de�ned in section 2.4.3. The

incompressible 
ow approximation ignores the propagation of acoustic waves (it as-

sumes in�nitely fast propagation), and allows the use of large integration time steps

(Peyret&Taylor [38]). Such an approach is valid when the acoustic waves play a

secondary role from a physical point of view: for example, when the time-scale of
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acoustic waves does not in
uence the main 
ow, and when we are not interested in

the generation of acoustic waves. The incompressible 
ow approach is also valid when

we are interested in the generation of acoustic waves, but the acoustic waves do not

interact with the hydrodynamics. In such a case, the incompressible 
ow solution

can be computed separately and then used as a source term to the wave equation

(Harding [24]). Moreover, the wave equation can be linearized, and can be solved

using analytic approximations (Green function integrals, for example) avoiding the

cost of a direct numerical solution.

The incompressible 
ow approximation is a good idea when the propagation of

acoustic waves does not in
uence the dynamics of the phenomenon. However, it is

inappropriate when the 
ow problem depends on the interaction between hydrody-

namics and acoustic waves (the 
ow of air inside 
ue pipes, for example). The only

way to simulate correctly such a 
ow is to simulate both the hydrodynamics and the

acoustic waves together. In other words, the only way to simulate such a problem is

to solve numerically the compressible Navier Stokes equations, and to compute the

time-dependent evolution of the 
ow and the acoustic waves. This is the subject of

my thesis.

1.3 Local-interaction parallel computing

Parallel computing is necessary in order to perform high resolution simulations of hy-

drodynamics and acoustic waves. To this end, I have developed a parallel system on a

cluster of 25 non-dedicated workstations. The system achieves concurrency by decom-

posing the simulated area into subregions and by assigning the subregions to parallel

subprocesses on di�erent workstations. The use of explicit numericalmethods leads to

small communication requirements. The parallel subprocesses automatically migrate

from busy hosts to free hosts in order to exploit the unused cycles of non-dedicated

workstations, and to avoid disturbing the regular users. The system achieves 80%
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parallel e�ciency (speedup/processors) using 20 HP-Apollo workstations in a cluster

where there are 25 non-dedicated workstations total. 2

In chapter 6, I describe the implementation of the parallel simulation system,

and I present detailed measurements of the parallel e�ciency (speedup/processors)

of 2D and 3D simulations of 
uid dynamics. Further, I develop a theoretical model

of e�ciency which �ts closely the measurements. The measurements show that the

shared-bus Ethernet network is adequate for two-dimensional simulations of 
uid

dynamics, but limited for three-dimensional ones. I expect that new technologies

in the near future such as Ethernet switches, FDDI and ATM networks will make

practical three-dimensional simulations of 
uid dynamics on a cluster of workstations.

It is worth emphasizing that the success of my parallel simulation system depends

considerably on the use of explicit methods. This is because explicit methods are

completely parallelizable, and lead to small communication requirements which can

be satis�ed on a cluster of workstations. The disadvantage of explicit methods is

that small integration time steps are required for numerical stability. However, the

simulation of subsonic 
ow requires small integration time steps, anyways, to model

the fast-moving acoustic waves. Thus, there is a match between the requirements of

the problem and the requirements of explicit methods. In addition, there is a match

between the problem, the algorithms, and the computer system.

In general, explicit methods are desirable for parallel computing when increasing

2A major motivation for developing parallel computing on a cluster of workstations has been the

high availability of workstations compared to other parallel computers. At the Arti�cial Intelligence

Laboratory and the Laboratory for Computer Science at MIT where I have done most of this work,

there is a Connection Machine CM-5 with 128 processors, but the machine is time-shared by too

many people. There are typically 10 users sharing the 128 processors on the average, which reduces

the computation power to 12 processors per user at best. This processing power is not enough for

my purposes.

The computational speed of an HP9000/715 workstation is approximately 3-4 times the compu-

tational speed of one processor of the CM-5. Thus, a distributed simulation using 20 HP9000/715

workstations is equivalent approximately to 60-80 processors of the CM-5 running in dedicated mode.

Of course, this comparison only applies to special problems that have a small ratio of communica-

tion to computation. Other problems that have large communication requirements would not run

e�ciently on my distributed system. Such problems might run e�ciently on a parallel computer

such as the CM-5 that has a powerful communication network.
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numbers of local processing units are available with minimumcommunication capacity

between the processing units. Such computers may be widespread in the future; for

instance, a future parallel computer may consist of millions of local processing units,

each unit having the power of one of today's workstations. Communication is going

to dominate the cost of such computers, and methods that minimize communication

are going to be desirable. With this perspective in mind, the work presented herein

for a cluster of 25 workstations, may have applications to future parallel computers

as well.

1.3.1 Comparison with other work in parallel computing

The suitability of local-interaction algorithms for parallel computing on a cluster of

workstations has been demonstrated in previous works, such as [7], [9], and elsewhere.

Cap&Strumpen [7] present the PARFORM system and simulate the unsteady heat

equation using explicit �nite di�erences. Chase&et al. [9] present the AMBER sys-

tem, and solve Laplace's equation using Successive Over-Relaxation. The present

work emphasizes, and clari�es further the importance of local-interaction methods

for parallel systems with small communication capacity. Furthermore, a real problem

of science and engineering is solved using the present approach. The problem is the

simulation of subsonic 
ow with acoustic waves inside wind musical instruments.

In the 
uid dynamics community, little attention has been given so far to simula-

tions of hydrodynamics and acoustic waves. The reason is that such simulations are

very compute-intensive, and can be performed only when parallel systems such as the

one described herein are available. Furthermore, the 
uid dynamics community has

generally shunned the use of explicit methods because explicit methods require small

integration time steps (see section 3.2). With the increasing availability of parallel

systems, explicit methods are now attracting more attention in all areas of computa-

tional 
uid dynamics. The present work clearly reveals the power of explicit methods

in one particular area, and should motivate further work in explicit methods and
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local-interaction algorithms.

Regarding parallel e�ciency (speedup/processors), the e�ciency of my parallel

simulation system is very good, 80% typically. My measurements of the e�ciency

(section 6.7) are more detailed than any other reference that I know, especially for

the case of a shared-bus Ethernet network. I also develop a model of parallel e�ciency

in section 6.8, which is based on simple ideas that have been discussed previously,

for example in Fox et al. [19] and elsewhere. I compare the predictions of this model

against real measurements of the parallel e�ciency.

Regarding the problem of using non-dedicated workstations, I handle this prob-

lem by employing automatic process migration from busy hosts to free hosts. An

alternative approach which has been used elsewhere is the dynamic allocation of pro-

cessor workload. In the present context, dynamic allocation means to enlarge and to

shrink the subregions which are assigned to each workstation depending on the CPU

load of the workstation (Cap&Strumpen [7]). Although this approach is important

in various applications (Blumofe&Park [5]), it seems unnecessary for simulating 
uid


ow problems with static geometry. For such problems, it may be simpler and more

e�ective to use �xed size subregions per processor, and to apply automatic migration

of processes from busy hosts to free hosts. This approach has worked very well in the

parallel simulations presented here.

Regarding the design of the parallel simulation system, I have aimed for sim-

plicity. In particular, the special constraints of local-interaction problems and static

decomposition have guided the design of the parallel system. The automatic mi-

gration of processes has been implemented in a straightforward manner because the

system is very simple. The availability of a homogeneous cluster of workstations,

and a common �le system have also simpli�ed the implementation, which is based

on UNIX and TCP/IP communication routines. The approach presented here works

well for spatially-organized computations which employ a static decomposition and

local-interaction algorithms.
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My thesis does not examine issues such as high-level parallel programming, parallel

languages, and inhomogeneous clusters of workstations. E�orts along these directions

are the PVM system (Sunderam [50]), the Linda system (Carriero [8]), the packages of

(Kohn&Baden [30]) and (Chesshire&Naik [11]) that facilitate parallel decomposition,

the Orca language for distributed computing (Bal&et al. [1]), etc.

1.4 Some simulation results

This section describes a few representative simulations and physical measurements of

the musical tones generated by a soprano recorder 
ue pipe.

1.4.1 Flue pipe of a soprano recorder

The recorder is a ZEN-ON SB-DX soprano recorder, made in Japan, and commonly

available in music stores. The recorder consists of three parts which are made out of

plastic, and which connect together to make the recorder (see �gure 1-2).

� The head of the recorder consists of the 
ue (narrow passage where the jet of

air is formed), the labium (sharp edge which the jet impinges), and a short

cylindrical pipe of length 6:1 cm and diameter 1:34 cm.

� The main pipe of the recorder is designed to attach to the head of the recorder.

The main pipe is cylindrical, it tapers along its length, and includes �nger-holes

for playing di�erent tones.

� The end-piece of the recorder is designed to attach to the end of the main

pipe. The end-piece has a 
aring shape, and includes one double-�nger-hole for

playing the lowest notes C and C# of the recorder.

For the purpose of testing the basic phenomenon of tone generation by the recorder,

the �nger-holes and the tapering shape of the recorder are not necessary, and they
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Figure 1-2: A three-piece soprano recorder.

are omitted here. Speci�cally, the main pipe of the recorder is replaced with a new

pipe which has constant diameter and no �nger-holes. The new pipe is connected

to the head of the recorder which is 6:1 cm long. The addition of the new pipe

results in lengths such as 20 cm which are typical of soprano recorders. It should be

noted that the attached pipe has a slightly smaller diameter 1:27 cm than the head

of the recorder 1:34 cm. This di�erence is very small, however, and is neglected in

the computer simulations. The attached pipe is closed at the far end in the present

experiments (see chapter 7 for simulations of open-end pipes).

20040

25
70

75

13.4 18

Figure 1-3: Soprano recorder 
ue, 20 cm pipe. The numbers shown correspond to
millimeters.

Figures 1-3 and 1-4 show the recorder according to a 2D simpli�ed geometry which

is used in the simulations. The gray areas correspond to the walls around the recorder.

The walls above the recorder are skipped in the simulation in order to reduce the

computational e�ort. The pipe is located at the bottom of the picture, and measures
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Figure 1-4: A smaller outlet region than �gure 1-3.

20 cm long and 1:34 cm wide. The 
ue (or 
ue channel) is located at the bottom left

corner, and measures 4 cm long and 0:1 cm wide. At a distance of 0:4 cm in front

of the ori�ce of the 
ue (where the jet of air emerges), there is a sharp edge which is

called the labium. The labium measures an angle of 14 degrees approximately, and

is positioned slightly below the midline of the 
ue channel. Speci�cally, the tip of

the labium is located at 1:34 cm from the bottom of the pipe, and the 
ue channel is

located between 1:3 cm and 1:4 cm.

.4

.99 .93

.1.13

4.0

Figure 1-5: The 
ue and the labium in three dimensions. Not drawn to scale. The
numbers correspond to centimeters.
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In three-dimensions, the pipe of the recorder is a cylinder, and the 
ue channel and

the labium are approximately rectangular as shown in �gure 1-5. The 
ue channel is

slightly curved along the sides which measure 0:99 cm and 0:93 cm, but the curvature

is very small and is neglected here. Further, the 
ue channel tapers slightly along

the side which measures 4:0 cm. Speci�cally, the 
ue channel measures 0:13 cm by

0:99 cm at the inlet (where air is blown into the recorder), and it measures 0:10 cm

by 0:93 cm at the ori�ce (where the air emerges to strike the labium). The tapering

of the 
ue channel is neglected in the computer simulations because it is very small.

The Reynolds number of the 
ow of air inside the soprano recorder ranges between

500 and 1700. The Reynolds number is de�ned as the mean speed of the jet of air

inside the 
ue channel (typical speeds are between 800 and 2500 cm/s) times the width

of the 
ue channel 0:1 cm, and divided by the kinematic viscosity of air 0:15 cm2=s

(see section 2.6 for details). High Reynolds numbers typically produce turbulent 
ow

which involves very small length scales, and is di�cult to simulate numerically. In

the case of a narrow jet of air 0:1 cm wide, a Reynolds number above 500 is rather

high, so that the jet is very unstable and becomes turbulent after exiting the ori�ce

and impinging the labium. Although the computer simulations can not model the

�ne scales of turbulence (the grid size is only �x = 0:01 cm), an arti�cial-viscosity

�lter is used which dissipates small-wavelengths in a pseudo-turbulent-like fashion

(see section 5.5). It appears that a precise model of turbulence is not necessary to

reproduce the basic operation of the 
ue pipe. Further investigation of this issue

should be done in the future.

1.4.2 Computer simulations

Simulation results using the lattice Boltzmann method and the compressible �nite

di�erence method of section 3.3 are presented here. The simulations are based on the

geometry shown in �gure 1-3 for the lattice Boltzmann method, and on the geometry

shown in �gure 1-4 for the �nite di�erence method. The two geometries are almost
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Figure 1-6: Simulation of a 20 cm 
ue pipe. The decomposition 10 � 6 is shown as
dashed lines. 22 workstations are used. The gray-shaded areas are not simulated.

identical except that the outlet region is 8:0 cm wide in the former, and is 5:8 cm

wide in the latter. The reason for this di�erence is purely accidental (availability of

workstations), and is too small to a�ect the results signi�cantly. However, it should

be noted that very small outlet regions become quickly saturated with the vorticity

generated by the 
ue, and complicate the simulation. Thus, the size of the outlet

region should be as large as possible within one's computational constraints.

In the simulations, the air is forced through the inlet (the entrance of the 
ue

channel), and exits through the outlet (the top part of the picture). During the

initial blowing of the air into the 
ue channel, the imposed density and velocity at

the inlet rise smoothly to �nal values within 3 ms (see section 7.3.2 for more details).

Appropriate boundary conditions at the inlet and the outlet (see section 7.3) maintain

the air 
ow through the recorder, and prevent re
ection of acoustic waves at the inlet

and the outlet. All other boundaries are solid walls and re
ect the acoustic waves

which are generated by the 
ue.

The spatial resolution of all the simulations presented in this section is �x =

0:01 cm. This resolution corresponds to 10 
uid nodes along the width 0:1 cm of the


ue channel (see �gures 1-7 and 1-8), and produces adequate results. Finer-resolution

simulations of 
ue pipes have also been performed (for example, 13 nodes along the
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Figure 1-7: The grid at the 
ue-labium region, there are 10 
uid nodes along the
width 0:1 cm of the 
ue channel.

Figure 1-8: Magni�ed view of the ori�ce and the labium according to the simulations.

width of the 
ue channel), and the results do not change very much. Fewer than 10

nodes along the width of the 
ue channel are not recommended because the ratio of

the width of the 
ue channel divided by the width of the tip of the labium (one �x

wide) should be at least 10 : 1 in order to produce a \sharp" labium and in order to

position the labium along the width of the 
ue channel with an accuracy of 0:01 cm.

The integration time step is determined from the requirement that the numerical

speed �x=�t must be of the order of the speed of sound cs = 34400 cm/s. Accord-

ingly, the time step is kept very small, for example �t = 2:1�10�7 s, which makes the
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Vmean f0 (�0) A0 f1 (�1) A1 f2 (�2) A2

cm/s Hz (cm) 10�5 Hz (cm) 10�6 Hz (cm) 10�6

818 219 (157) 0:14 374 (92) 1:14 1159 (30) 0:71

1104 1132 (30) 1:88 395 (87) 5:07 1062 (32) 3:69

1535 1104 (31) 1:05 1873 (18) 8:82 387 (89) 7:49

1995 1926 (18) 3:56 417 (82) 18:7 1169 (29) 10:2

Table 1.1: Frequencies, lattice Boltzmann, 20 cm closed-end recorder

Vmean f0 (�0) A0 f1 (�1) A1 f2 (�2) A2

cm/s Hz (cm) 10�5 Hz (cm) 10�6 Hz (cm) 10�6

838 424 (81) 0:12 326 (106) 1:01 1134 (30) 0:52
1113 1116 (31) 1:39 420 (82) 3:69 244 (141) 1:98

1634 1882 (18) 1:89 1182 (29) 7:85 329 (104) 6:58
2082 1957 (18) 4:26 377 (91) 25:1 1143 (30) 10:1

Table 1.2: Frequencies, compressible �nite di�erence, 20 cm closed-end recorder

Vmean f0 (�0) A0 f1 (�1) A1 f2 (�2) A2

cm/s Hz (cm) 10�1 Hz (cm) 10�2 Hz (cm) 10�3

734 395 (87) 1:051 1186 (29) 3:177 2768 (12) 10:55
1140 1111 (31) 1:095 401 (86) 8:754 1915 (18) 14:63
1558 1140 (30) 2:016 1879 (18) 0:996 398 (87) 7:557

1985 1145 (30) 2:676 3438 (10) 0:959 5730 (6) 6:169
2420 1918 (18) 2:947 3836 (9) 3:015 7670 (4:5) 0:889

Table 1.3: Frequencies, physical measurements, 20 cm closed-end recorder

simulation very compute-intensive, and makes parallel computing a necessity. Typi-

cal simulations correspond to 30 ms, and require 150000 integration steps. Figure 1-6

shows a typical decomposition of the geometry of a 
ue pipe into subregions for the

purpose of parallel computing. The decomposition 10 � 5 is shown as dashed lines.

The gray-shaded areas are not simulated, only the white areas are simulated. There

are 22 rectangular subregions which are active, and are assigned to 22 workstations.

Each workstation can update 39100 
uid nodes per second (when the lattice Boltz-

mann method is used, see chapter 6), and the parallel e�ciency is approximately
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20 cmpipe f0 (�0) f1 (�1) f2 (�2) f3 (�3) f4 (�4)

Hz (cm) Hz (cm) Hz (cm) Hz (cm) Hz (cm)

open-closed 430 (80) 1290 (26:7) 2150 (16) 3010 (11:4) 3870 (8:9)

open-open 860 (40) 1720 (20) 2580 (13:3) 3440 (10) 4300 (8)

Table 1.4: Ideal resonant frequencies, 20 cm, open-closed and open-open.

80%. It takes about 48 hours of running-time to perform 150000 integration steps

using 0:79 million 
uid nodes.

Figures 1-15 to 1-18 show acoustic signals obtained from simulations of the 20 cm

closed-end recorder using the lattice Boltzmann method. Corresponding results using

the compressible �nite di�erence method are shown in �gures 1-19 to 1-22. The

major frequencies of the acoustic signals are summarized in tables 1.1 and 1.2. For

comparison purposes, frequencies obtained from physical measurements are shown in

table 1.3 (they are discussed in the next section), and the ideal resonant frequencies of

a passive pipe 20 cm long are shown in table 1.4 (again explained in the next section).

A sampling interval of approximately 3:09 �10�5 s is used in the computer sim-

ulations, which corresponds to a maximum frequency of 16:2 kHz. Frequencies of

interest are less than 5 kHz, and are shown in the �gures; frequencies higher than

5 kHz are not shown because they are of very small amplitude. Each �gure plots

the acoustic signal in the time domain at the bottom, and in the frequency domain

at the top. In the time domain, the acoustic signal is shown as the relative density

(a non-dimensional number). In the frequency domain, the acoustic signal is shown

as the pressure normalized by a standard pressure level of 2�10�4 gmcm=s2 (see

section 2.6). Also, in the frequency domain the acoustic signal is plotted according

to a logarithmic scale of 20 log10 decibel (dB), so that a gain of 20 dB corresponds to

a ratio of 10 in amplitude.

We notice that the computer simulations predict acoustic signals with amplitudes

near 100 dB, which may seem too large for a recorder, but it should be noted that
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Figure 1-9: The 
ow during the initial blowing of air into the 
ue pipe. Frames are
0:49 ms apart, from left to right. Iso-vorticity contours are plotted.

the simulation is two-dimensional (the sound spreads as 1=r in 2D versus 1=r2 in 3D),

and the acoustic signal is sampled inside a small outlet cavity very near the labium

(approximately 5 cm above the labium). Thus, acoustic signals with amplitude near

100 dB are not surprising.

We also notice that the acoustic signals predicted by the lattice Boltzmann and

the compressible �nite di�erence methods are similar, but slightly di�erent. Possible

reasons for the di�erences are the following: The modeling of boundary conditions

is di�erent between lattice Boltzmann and �nite di�erences because the computa-

tional structure of the methods is very di�erent. Also, the lattice Boltzmann method

can model the high-frequency components of acoustic waves more accurately than

the compressible �nite di�erence method. The above di�erences between the lat-

tice Boltzmann method and the compressible �nite di�erence method are not well

understood at present. Future work is needed to understand them.
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Figure 1-10: Jet oscillations in the 
ue-labium region. Frames are 0:33 ms apart,
from left to right. Iso-vorticity contours are plotted.

To get an idea of how the jet of air moves inside the 
ue pipe, �gures 1-9 to 1-13

show sequences of pictures of the 
ue-labium region from simulations using the lattice

Boltzmann method. Similar pictures are obtained using the �nite di�erence method.

Figures 1-9, 1-10 come from a simulation of a closed-end soprano recorder which is

6:1 cm long and generates a tone of 1000 Hz (the blowing speed is 900 cm/s, and a

complete picture of this recorder is shown in �gure 6-1 of chapter 6). Figures 1-11

to 1-13 come from a simulation of a 20 cm closed-end recorder blown at 1104 cm/s.

Figure 1-11 shows vorticity iso-contours, �gure 1-12 shows the velocity vector �eld,

and �gure 1-13 shows kinetic energy iso-contours calculated as V 2
1 + V 2

2 and clipped

between the values 1� 2�106 (cm=s)2.
Figure 1-9 illustrates the very beginning of blowing air into the recorder, and

�gures 1-10 to 1-13 illustrate the oscillations of the jet after startup. Initially, the

jet of air turns outwards, and moves outside of the labium. This is simply because
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Figure 1-11: Jet oscillations of the 20 cm closed-end recorder at blowing speed
1104 cm/s. Frames are 0:22 ms apart, from left to right. Iso-vorticity contours

are plotted. 35:6 ms after startup.

the pressure is smaller outside the pipe than inside. Subsequently, the jet begins to

buckle, and starts to oscillate up and down. Meanwhile, the acoustic waves inside

the pipe travel back and forth and build strong acoustic energy inside the pipe. The

acoustic waves interact with the jet so that the jet oscillates at frequencies near the

resonant frequencies of the pipe. Exactly how this happens is not known (section 7.2),

but simple models have been proposed (Verge94 [57, 56], Hirschberg [26]). It would

be an interesting future project to test these models against the precise data which

can be obtained from the present simulations.
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Figure 1-12: Jet oscillations of the 20 cm closed-end recorder at blowing speed
1104 cm/s. Frames are 0:22 ms apart, from left to right. The velocity vector �eld is

plotted at 1 : 4 the actual grid resolution. 35:6 ms after startup.

1.4.3 Physical measurements

Comparing the simulations against physical measurements is very important because

the physical measurements provide information of how close to reality the computer

simulations are. Although the numerical accuracy of a numerical method can be

tested on simple 
ow problems which possess exact solutions (this is done in chapter 4

for the lattice Boltzmann method), the numerical accuracy on simple problems does

not guarantee that the modeling of a physical phenomenon is correct. There are many

other factors that come into play when a real phenomenon is simulated. For instance,
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Figure 1-13: Jet oscillations of the 20 cm closed-end recorder at blowing speed
1104 cm/s. Frames are 0:22 ms apart, from left to right. Kinetic energy iso-contours

are plotted. 35:6 ms after startup.

the underlying di�erential equations which are solved numerically (chapter 2) may

miss some important e�ect of the physical phenomenon under consideration. Also,

the numerical boundary conditions are often a poor model of the physical boundary

conditions (for example, the practically-in�nite outlet region above the recorder must

be approximated with a small outlet region in the simulations). Thus, there is always

some uncertainty about the physical modeling, which makes the comparison between

simulations and physical measurements very important.

In the physical measurements presented in this section, a mechanical air supply
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supply

computer
microphone

flowmeter

recorder

air

Figure 1-14: The setup for physical measurements. Not drawn to scale.

is used to blow air into the recorder. The air passes through a regulating valve and a


ow-meter before reaching the recorder, as shown in �gure 1-14. Thus, the response

of the recorder can be measured for di�erent blowing speeds. The generated acoustic

signal is measured by means of a CT329 microphone, which is placed at a distance of

approximately 100 cm away from the recorder. The analog signal from the microphone

is digitized using a SONY portable computer with an internal A/D converter. Then,

a Fourier transform is performed to calculate the frequency spectrum.

Figures 1-23 to 1-27 show acoustic signals obtained from physical measurements of

the 20 cm closed-end recorder, and table 1.3 summarizes the frequencies. The acoustic

signals are sampled during steady state (a few seconds after the initial blowing of air

into the recorder). The sampling interval is 2:65 � 10�5 s, and corresponds to a

maximum frequency of 18:9 kHz. The absolute amplitude of each measurement is

not known because the measuring apparatus is not calibrated. However, the relative
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amplitudes can be compared between di�erent measurements because the measuring

apparatus is identical in all cases.

A comparison between �gures 1-23 to 1-27 shows that the amplitude of the acoustic

signal increases with larger blowing velocity. Also, acoustic modes of higher frequency

are excited as the blowing speed increases. It should be noted that a frequency of

1918 Hz (see table 1.3) is generated at the blowing speed of 2420 cm/s only when

the initial blowing of air is abrupt. By contrast, a smooth (slow-rise) initial blowing

of air makes the recorder generate the lower mode near 1145 Hz. Such behavior is

expected in 
ue pipes (Verge94 [56]).

Another observation is that the frequencies generated by the recorder are related

by ratios of integers such as 1 : 3 : 5 : 7 : 9 which are characteristic of an open-

closed pipe. For comparison purposes, table 1.4 shows the ideal resonant frequencies

of an open-open and an open-closed pipe which is 20 cm long. The ideal resonant

frequencies are based on the simple model of a pipe as a �nite-length string with

appropriate boundary conditions at the two ends. We can see that the ideal resonant

frequencies of an open-closed pipe are similar to the frequencies generated by the


ue, but there are di�erences. This is because the 
ue generates acoustic oscillations

according to a complex nonlinear feedback between the acoustic waves in the pipe

and the hydrodynamic behavior of the jet of air.

Finally, it must be noted that the blowing velocities of 1140 cm/s and 1558 cm/s

produce a sound which includes a weak low-frequency beat (perhaps 10 � 20 Hz).

This beat is not visible in the frequency spectra shown in �gures 1-24 and 1-25, but

it can be clearly heard by the human ear. The low-frequency beat is an interesting

issue to investigate in the future, but is not critical for an approximate comparison

between the simulations and the physical measurements.
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1.4.4 Comparison between simulation and measurements

Overall, the simulations are in reasonable agreement with the physical measurements.

For instance, the lowest mode of 400 Hz, as well as the higher modes near 1200 Hz

and 2000 Hz are predicted by the simulations. The qualitative behavior of jumping

to higher modes with higher blowing speeds occurs both in the simulations and in

the physical world. On the other hand, there are di�erences also.

The major di�erence (or cause of di�erences) between the simulations and the

physical measurements is that the simulations correspond to the �rst 30-40 ms after

startup, and the measurements correspond to the steady state a few seconds after

startup (see �gure 7-16 of section 7.5 for physical measurements of a startup tran-

sient). In this regard, only a rough comparison is possible between the simulations

and the physical measurements. A rough comparison is possible because periodic

oscillations become distinct 20 ms after startup, and the frequencies of the generated

sound can be clearly observed.

It must be noted that computer simulations of the steady state (for example, one

second after startup) would take a lot longer than the present simulations. Further-

more, a regular 
ow pattern exiting the outlet region would have to be established.

To perform such simulations, improved boundary conditions are needed for the outlet

region, as well as more compute-power, and perhaps a non-uniform grid to save on

computational e�ort. Also, it should be noted that the startup transient is very sen-

sitive to the details of the experimental apparatus. Thus, for the sake of simplicity,

physical measurements of the steady state are considered here.

Leaving aside the issue of steady state versus initial response, it is worth noting

that the acoustic signal is much cleaner (pure tones) in the physical measurements

than in the simulations. 3 Also, the simulated recorder does not sing well at blowing

3The \dip" of the density signal in �gure 1-17 at time 150�0:206 ms is caused by a very small

vortex that reaches the sampling location, and subsequently moves away. Such a dip is expected

because the density inside a vortex is much smaller than outside (tornado e�ect). Larger vortices

have a much more pronounced e�ect than the one shown here. To avoid such e�ects, the acoustic
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speed 818 cm/s, and the acoustic signal appears to die 20-30 ms after startup (this is

discussed further in section 7.4). Speci�c modeling issues which may account for the

above and other di�erences between the simulations and the physical measurements

are as follows:

� The physical measurements sample the acoustic signal at 100 cm away from

the recorder, while the simulations measure the acoustic signal 5 cm above the

recorder.

� Three-dimensional e�ects are neglected in the simulations. It is possible that

a 3D jet of air behaves slightly di�erently than a 2D jet. Also, a 3D resonant

pipe can store more acoustic energy than a 2D resonant pipe. Thus, an exact

correspondence between 2D and 3D at each blowing speed may not be possible.

� Higher spatial resolution than the one employed here (�x = 0:01 cm) may be

needed in the 
ue-labium region to follow the up/down motion of the jet, but

perhaps not. A related issue is that the surface of the labium is rough at very

small length scales �x = 0:01 cm (see �gures 1-8 and 1-7). The roughness of

the labium may a�ect the shedding of vortices. However, it is probably a minor

issue at the length scale of �x = 0:01 cm, and it diminishes with smaller �x.

� The walls of the outlet region near and above the labium re
ect acoustic waves.

Such walls are not present in the physical experiments. It is possible that the

re
ections from the walls in
uence the operation of the 
ue. However, I expect

that the e�ect is small because the very-top boundary of the outlet region does

not re
ect acoustic waves (where the 
ow exits from the simulation).

� The walls of the outlet region may a�ect the buildup of hydrodynamic pressure

gradients above the 
ue. The operation of the 
ue is very sensitive to the

surrounding pressure gradients.

signal should not be sampled very near and above the labium where vorticity is shed.
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� The limited size and the two-dimensional form of the outlet region encourage the

accumulation of vortices right above the labium. The vortices introduce hydro-

dynamic pressure gradients, and may interfere with the oscillations of the jet.

By contrast, in the physical world (practically in�nite and three-dimensional)

the generated vorticity is quickly carried away from the sensitive region of the


ue and labium. In the simulations, the vorticity can not move away so easily.

Anyone of the above issues, or a combination of them may be responsible for the

di�erences between the simulations and the physical measurements. However, the

most important issue seems to be the modeling of the outlet region. Future work

should be done along the following directions:

� Improve the boundary conditions at the outlet.

� Devise suitable means of clearing the outlet region from accumulated vorticity.

� Employ non-uniform grid to enlarge the outlet region without incurring a large

computational cost.

Despite the di�erences between the simulations and the physical measurements, the

results are very good as a �rst step.
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Figure 1-15: Lattice Boltzmann method, 20 cm closed-end soprano recorder, blowing
velocity 818 cm/s.

Figure 1-16: Lattice Boltzmann method, 20 cm closed-end soprano recorder, blowing

velocity 1104 cm/s.
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Figure 1-17: Lattice Boltzmann method, 20 cm closed-end soprano recorder, blowing
velocity 1535 cm/s.

Figure 1-18: Lattice Boltzmann method, 20 cm closed-end soprano recorder, blowing

velocity 1995 cm/s.
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Figure 1-19: Compressible �nite di�erence method, 20 cm closed-end soprano
recorder, blowing velocity 838 cm/s.

Figure 1-20: Compressible �nite di�erence method, 20 cm closed-end soprano

recorder, blowing velocity 1113 cm/s.
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Figure 1-21: Compressible �nite di�erence method, 20 cm closed-end soprano
recorder, blowing velocity 1634 cm/s.

Figure 1-22: Compressible �nite di�erence method, 20 cm closed-end soprano

recorder, blowing velocity 2082 cm/s.
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Figure 1-23: Physical measurements, steady state, 20 cm closed-end soprano recorder,
blowing velocity 734 cm/s. Arbitrary units of amplitude.

Figure 1-24: Physical measurements, steady state, 20 cm closed-end soprano recorder,

blowing velocity 1140 cm/s. Arbitrary units of amplitude.
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Figure 1-25: Physical measurements, steady state, 20 cm closed-end soprano recorder,
blowing velocity 1558 cm/s. Arbitrary units of amplitude.

Figure 1-26: Physical measurements, steady state, 20 cm closed-end soprano recorder,

blowing velocity 1985 cm/s. Arbitrary units of amplitude.
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Figure 1-27: Physical measurements, steady state, 20 cm closed-end soprano recorder,
blowing velocity 2420 cm/s, and abrupt blow of air at startup. Arbitrary units of

amplitude.



Chapter 2

The motion of 
uids

In this chapter, the partial di�erential equations of 
uid 
ow, known as the Navier

Stokes equations, are derived in the context of phenomena such as the 
ow of air

at room temperature and atmospheric pressure. In addition, an introduction to hy-

drodynamics and acoustics is presented which is useful background material. Most

of the results of this chapter are not really new as one can infer from the references

to previous work. However, the results are re-derived here and presented in a novel

way with extra care to be correct and relevant to physical reality. In addition, some

discussions such as the paradox of incompressibility in section 2.4.3 and the justi�-

cation of omitting the bulk viscosity in subsonic 
ow, can not be found easily in the

literature as far as I know.

2.1 The scale of macroscopic 
ow

A 
uid can be modeled either at the microscopic level or at the macroscopic level.

Here, the 
ow of a 
uid is modeled at the macroscopic level where \macroscopic"

means that the 
uid is viewed as a continuum and that the underlying molecular

motion is not considered directly. In particular, it is assumed that an in�nitesimal

volume of 
uid can be de�ned which is very large compared to the microscopic scales of

45
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molecular motion, and simultaneously very small compared to the macroscopic scales

of 
uid 
ow (Batchelor [3, p.4] and Tritton [54, p.48]). Thus, microscopic statistical


uctuations are ignored, and the state of the 
uid is de�ned as a continuous function

of space and time.

The above discussion can be made more precise by considering some numbers.

The diameter of an air molecule (modeled as a hard core sphere or billiard ball)

is of the order 3 �10�8 cm (Batchelor [3, p.3], Skordos&Zurek [49, p.878]). The

mean free path (average distance traveled by a molecule between collisions) is of the

order 10�5 cm at room temperature and atmospheric pressure. The smallest length

scale where the macroscopic 
uid dynamics can be safely employed is about 10�3 cm,

namely, 100 times the mean free path. Occasionally, macroscopic 
uid dynamics (the

Navier Stokes equations) are employed at length scales as small as the mean free

path, for example, in ultrasonic acoustics (Morse&Ingard [33]). However, there is no

reason to consider such small length scales here, and 10�3 cm will be assumed to be

the smallest length scale of interest. It should be noted that an acoustic wavelength

of 10�3 cm corresponds to an acoustic frequency of 34 MHz.

2.2 The conservation laws

The three most important properties of 
uid 
ow are the conservation of mass, mo-

mentum, and energy. These conservation properties arise from the underlying molec-

ular dynamics of 
uids, and they are inherited by the macroscopic dynamics. The

conservation properties are so powerful that one can derive the Navier Stokes equa-

tions by imposing conservation at the microscopic level, and by performing macro-

scopic averaging of the microscopic dynamics (Huang [27]). Such a derivation is called

the kinetic theory approach. A simpli�ed version of kinetic theory can be found in

section 4.1.2, where it is shown that the lattice Boltzmann method approximates the

Navier Stokes equations through a kinetic theory expansion known as the Chapman-
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Enskog expansion.

Besides the kinetic theory approach, another way of deriving the Navier Stokes

equations is to assume that the conservation of mass, momentum, and energy apply

directly at the macroscopic level. Speci�cally, an in�nitesimal but macroscopic volume

of 
uid (called a 
uid element) is considered, and its evolution in time is examined.

The mass of the 
uid element must remain constant as the 
uid element moves with

the 
ow. The momentum and energy may change as a result of interactions with the

surrounding 
uid elements, but the interactions must conserve the total momentum

and energy. By considering small changes during a su�ciently small interval of time,

a set of partial di�erential equations can be derived which describe the evolution of

mass, momentum, and energy of individual 
uid elements.

An important simpli�cation in deriving the macroscopic equations of 
uid 
ow is

to introduce 
ow variables (density, velocity, and temperature) which are functions

of space and time. The 
ow variables are an alternative way of describing the 
ow

as opposed to the mass, momentum, and energy of individual 
uid elements . The

two approaches are equivalent. For instance, by integrating the values of the 
ow

density and velocity inside a given volume of space at a particular point in time, we

can obtain the mass and the momentum of a 
uid element that corresponds to the

volume of space under consideration at that particular time.

The 
ow variables are simpler to use than the mass, momentum, and energy of

individual 
uid elements because the 
ow variables are de�ned on a �xed coordinate

system, and do not move with the 
ow as the 
uid elements do (Morse&Ingard [33,

p.235], Batchelor [3, p.71], Lamb [31, p.12]). When the description of a 
ow is based

on the 
ow variables only, it is called Eulerian. Alternatively, when the description

of a 
ow refers to the properties of individual 
uid elements, it is called Lagrangian.

Most texts in 
uid mechanics follow the Eulerian description, and this will be done

here also.

Below, the Navier Stokes equations are derived using the ideas outlined above. For
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this purpose, the 
uid density �(x; y; z; t) and the 
uid velocity Vj(x; y; z; t) are intro-

duced as continuous functions of space and time, where the components of the 
uid

velocity Vj correspond to the Cartesian directions x; y; z for j = 1; 2; 3 respectively.

Also, the advective derivative D=Dt is introduced as follows,

D

Dt
=

@

@t
+ Vj

@

@xj
(2.1)

where the Einstein summation convention is used: When an index appears twice in

the same term, a summation is automatically implied. The notation xj stands for

x; y; z when j = 1; 2; 3. The advective derivative is a special case of the total derivative

of a variable which is a function of x; y; z; t under the following assumption,

@xj

@t
= Vj (2.2)

The above assumption is true in the case of a 
uid element which moves with the local

velocity Vj of the 
ow. It turns out that the advective derivative is omnipresent in


uid mechanics, and it is worth reserving the symbol D=Dt to refer to the advective

derivative (Batchelor [3, p.73]).

2.2.1 Mass conservation

First, the mass conservation equation is derived, which is also known as the mass

continuity equation. We consider a 
uid element which is positioned at x; y; z at time

t, and has volume A(x; y; z; t). The mass of the 
uid element is conserved and is

equal to �A. Therefore, the total derivative of the mass must be zero, or actually the

advective derivative D=�t must be zero because the 
uid element moves with the

local velocity Vj of the 
ow. Thus,

D

Dt
(�A) = 0 (2.3)

which gives,

A
D�

Dt
+ �

DA

Dt
= 0 (2.4)
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and
D�

Dt
+ �

�
1

A

DA

Dt

�
= 0 (2.5)

To proceed further, we need to express the relative change of the volume of the 
uid

element (1=A DA=Dt) in terms of the 
ow variables. As we will see below, the relative

change of the volume of the 
uid element (also known as dilatation) is equal to the

divergence of the 
uid velocity,

�
1

A

DA

Dt

�
=
@Vj

@xj
(2.6)

To prove equation 2.6, we examine how the geometry of the 
uid element distorts as

the 
uid element moves with the 
ow. Following Lamb [31, p.5], we consider a cubic


uid volume such as the one shown in �gure 2-1. We assume that the six faces of the

cubic volume are initially aligned with the axes of the coordinate system. The center

of the volume is located at some point (x1; x2; x3), and the volume has dimensions

(�x1;�x2;�x3). The two faces of the cube that are opposite each other along the

x1 direction are referred to as the x1-faces of the cube, and they are located at

(x1 � �x1

2
; x2; x3) (2.7)

If the 
uid velocity is equal to (V1; V2; V3) at the center point (x1; x2; x3) of the cube,

then the x1-faces are moving outwards (expanding) with the following velocities along

the x1 direction,  
V1 +

@V1

@x1

�x1

2

!
(2.8)

�
 
V1 � @V1

@x1

�x1

2

!
(2.9)

The above quantities express the change of volume along the x1 direction. The

motion of the x1-faces along the x2 and x3 directions produces shearing of the volume

only, and does not change the volume to �rst order in the di�erential quantities

�x1;�x2;�x3. Thus, we can ignore the shearing motion here. After an in�nitesimal
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interval of time �t has elapsed, the change of volume due to expansion along the x1

direction is equal to  
@V1

@x1
�x1

!
�x2�x3�t (2.10)

Similar relations can be obtained for the expansion along the x2,x3 directions using

the other faces of the cubic volume. The total rate of change of volume per unit of

time (expanding volume) is given by the sum of the above terms,

DA

Dt
=

 
@V1

@x1
+
@V2

@x2
+
@V3

@x3

!
�x1�x2�x3 (2.11)

Combining equation 2.11 with equation 2.5 and the fact that A = �x1�x2�x3 we

obtain,
D�

Dt
+ �

@Vj

@xj
= 0 (2.12)

where the summation convention is used. We also use the notation,

D�

Dt
+ �(r � ~V ) = 0 (2.13)

The above is the mass continuity equation. We have derived it by considering the

conservation of mass of a moving 
uid element during an in�nitesimal interval of time,

and by relating the mass of the 
uid element to the Eulerian density and velocity of

the 
ow.

An alternative way of deriving the mass continuity equation is to consider a �xed-

in-space volume of 
uid, and to balance the mass which 
ows through the boundaries

of the volume with the change of density inside the volume. This alternative approach

is found in Landau&Lifshitz [32, p.1] and Batchelor [3, p.74], and it produces the

following equation,
@�

@t
+r � (�~V ) = 0 (2.14)

which is equivalent to equation 2.13. In my opinion, the approach of the moving


uid volume is somewhat more intuitive than the �xed-in-space volume because it is

easier to visualize what happens when the 
uid volume moves and distorts with the


ow. On the other hand, the use of both approaches leads to a better understanding
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x2

x1

x3

Figure 2-1: A 
uid element whose shape is a cube at time zero, and its six faces are
normal to the Cartesian axes.

than either one by itself. It should be noted that the �xed-in-space volume is a purely

Eulerian approach; while the moving 
uid volume, as described above, is a Lagrangian

idea expressed in Eulerian 
ow variables.

2.2.2 Momentum conservation

The momentum Navier Stokes equation can be derived in a similar way to the mass

conservation equation by considering the changes of momentum of a 
uid element

during an in�nitesimal interval of time. If we consider the forces acting on the six

faces of a cubic volume, we can write an equation for the conservation of momentum

along the xj direction, as follows,

D(�Vj)

Dt
=
@(�jk)

@xk
(2.15)

where �jk is called the pressure tensor, and it models the forces that arise from

pressure and from viscosity (internal friction of the 
uid medium). The derivation

of the pressure tensor is somewhat long and is omitted here. The details can be

found in standard textbooks such as Landau&Lifshitz [32, p.45], Batchelor [3, p.147],
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Newman [34, pp.50{63]. These references show that the pressure tensor can be written

as follows,

�jk = �P�jk + �

 
@Vj

@xk
+
@Vk

@xj

!
+ (�2

3
� + �) (r � ~V ) �jk (2.16)

where P is the scalar pressure, � is the �rst coe�cient of viscosity (corresponding to

friction from shearing motion), and � is the second coe�cient of viscosity (correspond-

ing to friction from bulk-expanding motion). The above tensors can be represented

in a Cartesian coordinate system in terms of 3 � 3 matrices as follows,

�jk =

8>>>>><>>>>>:
1 0 0

0 1 0

0 0 1

9>>>>>=>>>>>;
(2.17)

 
@Vj

@xk
+
@Vk

@xj

!
=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

2
@V1

@x

@V1

@y
+
@V2

@x

@V1

@z
+
@V3

@x

@V2

@x
+
@V1

@y
2
@V2

@y

@V2

@z
+
@V3

@y

@V3

@x
+
@V1

@z

@V3

@y
+
@V2

@z
2
@V3

@z

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

(2.18)

Further, the following identities are useful,

@

@xk
(P�jk) =

@P

@xj
(2.19)

and
@

@xk

 
@Vj

@xk
+
@Vk

@xj

!
=

 
@Vj

@xk@xk

!
+

@

@xj

 
@Vk

@xk

!

= r2Vj +
@

@xj
(r � ~V )

(2.20)

The above identities can be used to write the momentumNavier Stokes equations in

the following form,

D(�Vj )

Dt
= � @P

@xj
+ �r2Vj +

�
�

3
+ �

�
@

@xj
(r � ~V ) (2.21)



CHAPTER 2. THE MOTION OF FLUIDS 53

where j = 1; 2; 3. The physical interpretation of the various terms of the above

momentum equation will be discussed in section 2.4. Next, the conservation of energy

is examined.

2.3 Adiabatic variations of temperature

In general, the simulation of viscous 
ow with acoustic waves requires the complete

Navier Stokes equations: the mass continuity equation, three equations for momen-

tum conservation, an equation for energy conservation, and an equation of state which

relates the three thermodynamic variables (temperature, pressure, and density). The

temperature represents the internal energy of the 
uid, and arises from the internal

degrees of freedom such as the vibrations of the 
uid molecules. The energy equa-

tion couples together the temperature variations with the density and momentum

variations of the 
ow.

In special cases, such as the 
ow of air at room temperature and atmospheric

pressure, the coupling between the temperature and the momentum of the 
ow is

very small and can be neglected. In particular, the partial di�erential equation for

energy conservation can be replaced with an exact relation between the temperature,

density, and pressure. This relation is called the adiabatic approximation, and it

is employed in the simulations presented here, in order to avoid solving a partial

di�erential equation corresponding to the conservation of energy.

In the adiabatic approximation, it is assumed that there is no conduction of heat

between di�erent parts of the 
ow. In addition, it is assumed that there are local

heat reservoirs at each point in space which allow local temperature oscillations, but

without any conduction of heat. The local heat reservoirs are necessary because the

density 
uctuations of acoustic waves are accompanied by small, but non-negligible

temperature 
uctuations. Namely, when the air suddenly compresses, its temperature

rises; when the air expands, its temperature lowers.
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The justi�cation for the adiabatic approximation is easy to understand in the case

acoustic oscillations: the acoustic oscillations happen very fast, so it makes sense to

assume that there is no conduction of heat. However, the adiabatic approximation

applies more generally as we shall see afterwards. First, let us derive an exact relation

between the temperature, density, and pressure by considering the temperature 
uc-

tuations of acoustic waves. This idea is due to Laplace, and is explained very nicely

in Rayleigh's book [42, p.20]. Mathematically, we de�ne P0; �0; �0 the initial values

of pressure, density, and temperature, and P; �; � the new values after an adiabatic

change. Then, the following relation applies which is known as the adiabatic law (see

section 2.3.1 for a derivation),

P

P0
=

 
�

�0

!

=

 
�

�0

! 



 � 1

!
(2.22)

where 
 is the ratio of the speci�c heats of the gas, and it is equal to 1:4 in the case

of air. We also de�ne the small variations P 0; �0; �0 around the constant mean values

P0; �0; �0 as follows,

P = P0 + P 0

� = �0 + �0

� = �0 + �0

(2.23)

We can obtain a relation between the variations P 0 and �0 by expanding the following

sum to �rst order in small quantities,

P

P0
= 1 +

P 0

P0
=

 
1 +

�0

�0

!

' 1 + 


�0

�0
(2.24)

Therefore,

P 0 =

 


P0

�0

!
�0 (2.25)

To proceed further, we use the equation of state for gases, which is a relation between

the mean values of the thermodynamic variables,

P0 = R�0 �0 (2.26)
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where �0 is expressed in absolute degrees Kelvin, and R is a gas constant which is

equal to 2:870 �106 cm2=s2 per degree Kelvin in the case of air (Batchelor [3, p.43]

and Lamb [31, p.478]). Equations 2.25 and 2.26 give

P 0 = (
 R �0) �
0 (2.27)

which can be written as

P 0 = c2s�
0 (2.28)

with the de�nition

cs =
q

 R �0 (2.29)

The constant cs is the speed of the propagation of acoustic waves as we will see in

section 2.5. The precise relation between pressure and density is as follows,

P = c2s�+ (P0 � c2s�0) (2.30)

For the sake of simplicity, the following formula is commonly used (throughout this

work and elsewhere),

P = c2s � (2.31)

with the understanding that it is okay to subtract an arbitrary o�set from the pressure

because only the gradients of the pressure in
uence the 
ow.

Above, an exact relation between the density and the pressure has been derived

by examining the adiabatic changes of pressure, density, and temperature of acoustic

waves. It turns out that the adiabatic approximation applies more generally to any

variations of density in subsonic 
ow as long as the variations are small. The reason

is as follows. Let us consider a steady 
ow inside a pipe (Hagen-Poiseuille 
ow, Lan-

dau&Lifshitz [32, p.51]), and let us ask whether the relation between pressure and

density variations P = c2s� still applies. The answer is yes, and the adiabatic law

still applies because what is important is how the state of equilibrium is reached.

Any disturbance in the 
uid is transmitted by fast acoustic waves, so that the new
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state of equilibrium is reached quickly and adiabatically to a good approximation.

Accordingly, the relation between small variations of pressure and density which is

derived above applies in general for any variations of density in subsonic 
ow.

For historical interest, it should be noted that Laplace proposed the adiabatic law

between pressure and density in order to calculate the speed of sound using equa-

tion 2.29. Before Laplace's formula, the previous estimate of the speed of sound fell

short of experimental measurements. The previous estimate, attributed to Newton,

assumed Boyle's law of in�nitely slow changes at constant temperature,

P

P0
=

�

�0
(2.32)

which misses the constant factor 
 so that the speed of sound comes out short by a

factor
p

 = 1:18.

2.3.1 Derivation of the adiabatic law

For completeness, a derivation of the adiabatic law (equation 2.22) is presented here,

which follows closely the derivation of Rayleigh [42, p.21]. First, the equation of state

for gases is considered which relates the three thermodynamic variables pressure P ,

density �, and temperature �,

P = �R � (2.33)

This can also be written as,

P A = R0 � (2.34)

where A is the volume under consideration, and is related to the density � as follows,

dA

A
= � d�

�
(2.35)

The new gas constant R0 is equal to the original gas constant R times the mass of the

volume under consideration. Di�erentiation of equation 2.34 produces the di�erential

equation of state which will be used below.

dP

P
+
dA

A
=
d�

�
(2.36)
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First, it is noted that the equation of state constraints the three thermodynamic

variables P;A; �, any two of them can be taken as independent variables, for example

P and A. Further, if an additional constraint is introduced, it may be possible

to obtain an exact relation between the thermodynamic variables because only one

variable will then be independent. The additional assumption is that there is no

communication of heat in the medium.

In order to exploit the assumption of no communication of heat, we examine the

amount of heat in the 
uid volume as a function of the pressure P and the volume

A. If the amount of heat is denoted Q, the following total di�erential expresses the

conduction of heat in terms of changes in pressure and volume,

dQ =

 
dQ

dA

!
dA+

 
dQ

dP

!
dP (2.37)

The above equation can be simpli�ed by considering changes of heat under constant

pressure, dP = 0, and also changes of heat under constant volume, dA = 0. In

particular, using the di�erential equation 2.36, the following relations can be obtained,

�p =

 
dQ

d�

!
P

=

 
dQ

dA

! 
dA

d�

!
=

 
dQ

dA

!
A

�
(2.38)

�v =

 
dQ

d�

!
A

=

 
dQ

dP

! 
dP

d�

!
=

 
dQ

dP

!
P

�
(2.39)

The above quantities are the ratios of changes in heat divided by the changes in

temperature under constant pressure and under constant volume. They are called

speci�c heats, and they are constant within a wide range of temperatures and pres-

sures (Batchelor [3, p.44]). They are certainly constant for the purpose of modeling

air 
ow inside 
ue pipes. Using the above relations together with the assumption

that there is no conduction of heat, dQ = 0, equation 2.37 becomes,

dQ =

 
�p

�

A

!
dA +

 
�v

�

P

!
dP = 0 (2.40)

or

� �p
d�

�
+ �v

dP

P
= 0 (2.41)
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which gives
dP

d�
=

�
�p

�v

�
P

�
(2.42)

or equivalently,
dP

d�
= 


P

�
(2.43)

with the appropriate de�nition of the constant 
,


 = �p=�v (2.44)

By performing an integration of equation 2.43 using logarithms, the adiabatic law is

obtained,

P

P0
=

 
�

�0

!

(2.45)

where P0; �0 are two initial values. This is the adiabatic law of equation 2.22 which

we wanted to prove.

We recall that the adiabatic law of equations 2.22 and 2.45 was the starting point

for calculating the relation between small variations of pressure and density P 0 = c2s�
0.

Here, we can also see that an alternative way of deriving the relation P 0 = c2s�
0 would

be to assume small variations P 0; �0 around an initial point P0; �0 in equation 2.43

and write,
dP

d�
= 


P

�
' 


P0

�0
(2.46)

An integration that involves the small variations P 0; �0 gives

P 0 =

 


P0

�0

!
�0 (2.47)

This is the same relation between small variations of pressure and density which was

derived previously in equation 2.25.

Armed with an exact relation between the pressure and the density, we can pro-

ceed in the following sections to analyze the physical properties of the Navier Stokes

equations.
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2.4 The Navier Stokes equations

The Navier Stokes equations which I use to model air 
ow inside 
ue pipes, can be

written compactly as follows,

D�

Dt
+ �r � ~V = 0 (2.48)

D(�Vj )

Dt
+ c2s

@�

@xj
� ��r2Vj � ��

@(r � ~V )
@xj

= 0 (2.49)

They are partial di�erential equations which express the conservation of mass and

momentum, and must be solved numerically. In addition, there is an exact relation

relation between the temperature, the density, and the pressure according to the

adiabatic law. This relation completes the physical model, and replaces a partial

di�erential equation for energy conservation as explained in the previous section.

The adiabatic relation between pressure and density variations is as follows,

P = c2s � (2.50)

Regarding notation, the index j in the Navier Stokes equations runs between j =

1; 2; 3 . The symbol D=Dt is the advective derivative, and cs is the speed of sound.

The coe�cients � and � are density-normalized viscosity coe�cients which are de�ned

as follows,

� =
�

�
� =

�=3 + �

�
(2.51)

where � and � are the un-normalized viscosity coe�cients de�ned in section 2.2. The

coe�cients � and � will be used from now on, and they are called kinematic and bulk

viscosity respectively.

The above partial di�erential equations can be written in expanded form as follows,

@�

@t
+
@(�Vx)

@x
+
@(�Vy)

@y
+
@(�Vz)

@z
= 0 (2.52)

@(�Vx)

@t
+
@(�VxVx)

@x
+
@(�VxVy)

@y
+
@(�VxVz)

@z
+
@(c2s�)

@x
� ��r2Vx � ��

@(r � ~V )
@x

= 0

(2.53)
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@(�Vy)

@t
+
@(�VxVy)

@x
+
@(�VyVy)

@y
+
@(�VyVz)

@z
+
@(c2s�)

@y
� ��r2Vy � ��

@(r � ~V )
@y

= 0

(2.54)

@(�Vz)

@t
+
@(�VxVz)

@x
+
@(�VyVz)

@y
+
@(�VzVz)

@z
+
@(c2s�)

@z
� ��r2Vz � ��

@(r � ~V )
@z

= 0

(2.55)

where �; Vx; Vy; Vz are the 
uid density and the components of the 
uid velocity in

the x,y,z directions respectively. The expanded form of the Laplacian operator r2 is

as follows,

r2 =
@2

@x2
+

@2

@y2
+

@2

@z2
(2.56)

A simpli�ed form of the Navier Stokes equations can be obtained by omitting the

bulk viscosity term ��@(r � ~V )=@x because it is very small in the case of subsonic


ow (see section 2.4.2). Also, the continuity equation 2.52 can be subtracted from

each one of the momentum equations 2.53{2.55, and the equations can be divided by

the density �. The resulting equations have the following form,

@�

@t
+
@(�Vx)

@x
+
@(�Vy)

@y
+
@(�Vz)

@z
= 0 (2.57)

@Vx

@t
+ Vx

@Vx

@x
+ Vy

@Vx

@y
+ Vz

@Vx

@z
+
c2s
�

@�

�@x
� �r2Vx = 0 (2.58)

@Vy

@t
+ Vx

@Vy

@x
+ Vy

@Vy

@y
+ Vz

@Vy

@z
+
c2s
�

@�

�@y
� �r2Vy = 0 (2.59)

@Vz

@t
+ Vx

@Vz

@x
+ Vy

@Vy

@y
+ Vz

@Vz

@z
+
c2s
�

@�

�@z
� �r2Vz = 0 (2.60)

The next section discusses the signi�cance of the shear and the bulk viscosity terms.

2.4.1 Shear viscosity

The coe�cient � that appears in the Navier Stokes equations is called the kinematic

viscosity. It is equal to the �rst coe�cient of viscosity � divided by the mean density

of the 
uid medium. The coe�cient � varies very slowly with temperature, and

the coe�cient � varies very slowly both with temperature and with density. The



CHAPTER 2. THE MOTION OF FLUIDS 61

Figure 2-2: A vortex forms when the 
ow bends around a sharp corner. If the 
ow
speed is large, the vortex may separate and move away with the 
ow, while new
vortices are being formed in its place.

variations are so small, however, that they are ignored here. Thus, � is assumed to

be constant. The value of � at selected temperatures is given in section 2.6.

Physically, the � term corresponds to friction, and it expresses the loss of momen-

tum due to shearing forces in the 
uid. For example, when two layers of 
uid slide

over each other with opposing velocities, or when a layer of 
uid is moving over a 
at

plate that is stationary with respect to the 
ow (�gure 2-4), the � term is responsible

for decelerating the neighboring layers of the 
uid that move with di�erent speeds.

Generally, the � term is responsible for smoothing and di�using di�erences in the

velocity of the 
uid.
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Figure 2-3: The boundary layer around a jet curls up and forms vortices that separate
from the main jet.

An important property of viscous 
uids is that when the � coe�cient is very small,

the deceleration of the 
uid due to viscosity occurs in small regions that are called

boundary layers (Newman [34, pp.70{68]). Inside a boundary layer the 
ow velocity

changes very rapidly from one value to another, which makes the velocity gradients

very large, and thus the � term of the Navier Stokes equations large enough that it

can not be neglected. Figure 2-4 shows the boundary layer above a 
at plate, where

the plate is stationary with respect to a fast-moving 
ow. The speed of the 
uid

changes from zero at the surface of the 
at plate to some large value away from the

plate on the other side of the boundary layer.
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In contrast to the above discussion of narrow boundary layers, I must clarify that

very thick boundary layers are also possible, although in this case the name \boundary

layer" is usually avoided. In particular, the boundary layers can grow slowly in space

and in time by di�usion, so that they can become very large in steady 
ow if the solid

boundary extends for a long distance, and if su�cient time elapses for the boundary

layer to grow from an initial non-moving state. An example of this situation is the

Hagen-Poiseuille 
ow (Newman [34, p.63{85], Landau&Lifshitz [32, p.51]) inside long

pipes, where the velocity assumes a parabolic pro�le eventually, and the boundary

layer can be considered to extend the radius of the pipe. However, in the case of

unsteady 
ow, and in the case where the solid boundary has a limited extent (a �nite

obstacle), the boundary layer can not grow, and it remains a narrow boundary layer

around the solid obstacle as described in the previous paragraph.

Under appropriate conditions, such as fast 
ow around sharp corners, the bound-

ary layer separates from the region where it is formed, and begins \to take a life of

its own" as it moves away with the 
ow. As soon as it separates, the boundary layer

turns around itself and forms narrow loops of turning 
ow, which are called vortices.

A simple way to understand this curling up is that the di�erent sides of the boundary

layer are moving with di�erent speeds, so that when the two sides are suddenly free,

they can only turn into themselves and curl up. Figure 2-2 shows the formation of a

vortex around a sharp corner, and �gure 2-3 shows the formation of vortices around

a jet that is injected at high speed into a stationary 
uid.

The angular speed of a vortex can be calculated using the curl of the 
uid velocity,

which is called the vorticity. In three dimensions the curl of the velocity is a 3D vector,

while in two dimensions the curl of the velocity is simply a scalar with a direction

normal to the plane of the 
ow, for example the z-axis. In particular, the following

formula applies,

(~r� ~V )z =

 
@Vy

@x
� @Vx

@y

!
(2.61)

In chapter 7, contour plots of the above scalar vorticity are used in order to visualize
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Figure 2-4: A boundary layer forms above a 
at plate that is stationary with respect
to a fast-moving 
ow.

the 
ow.

It is worth mentioning that a common approximation in 
uid mechanics is to

assume that the vorticity is zero for the most part of the 
ow. The rationale behind

this approximation is to assume that the viscosity is very small so that it can neglected

for the most part of the 
ow (inviscid 
ow). Also, the 
uid is assumed to be initially

at rest so that the vorticity is initially zero. Then, according to Kelvin's circulation

theorem for inviscid 
ows, the integral of vorticity remains constant in time over any

simply-connected surface of the 
ow (Newman [34, p.105]). Physically, this means

(Tritton [54] p.84 and p.114) that if the vorticity is initially zero, it will always

remain zero. Of course, the viscosity can not be neglected in boundary layers where

the velocity gradient is large. Thus, the condition of zero vorticity is always an

approximation which we hope is valid for the most part of the 
ow.
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The condition of zero vorticity enables us to write the velocity �eld as the gradient

of a scalar potential function. For example, in two dimensions, the condition of zero

vorticity implies that
@Vy

@x
=

@Vx

@y
(2.62)

This is the condition of integrability for an exact di�erential (Courant [13, p.353]),

d� = Vx dx + Vy dy (2.63)

Therefore, the scalar potential function � can be introduced in place of the vector

velocity. The scalar potential function is very useful because it enables us to calcu-

late analytically the solutions of many 
ow geometries (see chapter 4 of Newman's

book [34]) especially in two dimensions.

Because of its versatility in �nding analytic solutions, the potential approximation

is used very widely, even when there is a lot of vorticity in the 
ow, and the inviscid

assumption is very questionable. The way this is done is by introducing a potential

function with singularities where the vorticity is zero everywhere except at a few

singular points called point vortices. Using such techniques, the e�ect of boundary

layers, and also the e�ect of unsteady generation of vorticity can be handled within

the framework of a potential model (chapter 4 of Newman's book [34]). The potential

model is also useful in situations which are too complex to analyze otherwise, and the

potential model provides at least one estimate of the behavior of the 
ow. Such an

example is the 
ow near the edge of a 
ue pipe (for an overview see Verge94 [56] and

Hirschberg94 [26]). The success of the potential model in these situations depends on

having a good understanding of the 
ow in order to make the right assumptions and

the right approximations.

The above discussion on potential 
ow, vortex theory, and boundary layers is not

critical for the computer simulations, but it is useful background material. All of

the ideas introduced above are very important parts of 
uid dynamics, and there are

entire books and chapters devoted to their study [34, 44, 3, 54].
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2.4.2 Bulk viscosity

The � term of the Navier Stokes equations 2.53{2.55 is called bulk viscosity, and

expresses the loss of momentum during elastic compression and dilatation of 
uid

elements. The actual value of the � coe�cient is di�cult to measure experimentally,

and is not known for many types of 
uids (Tritton [54, p.58]). It is common practice

to use the following value,

� =
1

3
� (2.64)

which is called the Stokes' relation and corresponds to setting the second coe�cient

of viscosity equal to zero � = 0 in equation 2.51 (Peyret&Taylor [38, p.11] and

Tritton [54, p.58]).

In the case of subsonic 
ow, the � term is often omitted because the gradient of the

divergence of velocity is very small compared to the other terms of the momentum

Navier Stokes equations (see below). Accordingly, in the computer simulations I

omit the � term when I use �nite di�erence methods. However, when I use the

lattice Boltzmann method, I employ a positive � term which comes with the lattice

Boltzmann method by construction. The value of the � coe�cient for the lattice

Boltzmann method (two-dimensional orthogonal model) is given by equation 4.47

of chapter 4, and depends on two lattice Boltzmann parameter w0 and y0. The

parameter y0 is usually chosen y0 = w0=4 and the resulting formula for � is,

� = � (2 � 9w0) (2.65)

There is considerable freedom in choosing w0 within the constraints w0 > 0 and

5w0 + z0 = 1 where z0 > 0. For example, the value w0 = 5=27 produces the Stokes

relation � = 1
3
� (see section 4.1.3 regarding the maximum value of w0 for stability).

In my simulations, I also use the values w0 = 1=7 and w0 = 1=6 which produce slightly

larger values of � than the Stokes relation. I do not pay much attention to the precise

value of � because the � term is very small in subsonic 
ow.

The reason why the � term is very small in subsonic 
ow compared to the other
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terms of the momentumNavier Stokes equations is as follows. The continuity equation

shows that the divergence of velocity is directly proportional to changes in density.

The momentum equation shows that changes in density are proportional to changes

in 
uid momentum after multiplication by the square of the speed of sound. Since

the speed of sound is much larger than the 
uid speed in subsonic 
ow, the gradient

of the divergence of velocity (the � term) is expected to be small compared to the

other terms in the momentum equation.

The above argument can be made precise by obtaining an estimate for the gradient

of the divergence of velocity from the continuity equation 2.53, as follows,

� @(r � �~V )
@x

=
@(@�=@t)

@x
(2.66)

The above estimate of the divergence of velocity (multiplied by �) must be compared

against the other terms of the momentum equation. Let us choose the pressure term

as a good representative of the size of the terms in the momentum Navier Stokes

equations. We inquire whether the following inequality is true,

�
@

@t

 
@�

@x

!
� c2s

 
@�

@x

!
(2.67)

where the symbol \�" means \very small compared to". To prove this inequality, we

can estimate that the time derivative of @�=@x can not be larger than the present value

of @�=@x times the speed of sound divided by some wavelength � that corresponds

to this disturbance. This is because the fastest changes in subsonic 
ow propagate at

the speed of sound. Thus, we can write,

�
@

@t

 
@�

@x

!
� �

�
cs

�

�  
@�

@x

!
(2.68)

From the above, we can conclude that in the case of subsonic 
ow the inequality 2.67

is equivalent to the following inequality,

�

�
cs

�

�
� c2s (2.69)
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or

� � cs � (2.70)

In the case of air, the bulk viscosity coe�cient � of air is about 0:075 cm2=s (using

� = �=2), and the speed of sound is cs = 34400 cm/s (see section 2.6). The smallest

wavelength (smallest length of disturbance) at which the Navier Stokes equations are

applicable is about � = 10�3 cm as explained in section 2.1, so the above inequality

is well satis�ed. Also, the wavelength � = 10�3 cm corresponds to a frequency

f = cs=� = 34 MHz which is well beyond the range of acoustic frequencies that we

are interested in the case of musical instruments, namely less than 20 kHz. Therefore,

it is reasonable to ignore the � term in the computer simulations of 
ue pipes. In

section 2.5.2, the e�ect of bulk viscosity on the decay of acoustic waves is calculated

exactly, and is found to be extremely small.

2.4.3 Incompressible 
ow approximation

This section describes the incompressible 
ow approximation of the Navier Stokes

equations. This approximation is not used in the computer simulations, but is useful

background material.

First, a word on terminology is in order. An incompressible 
ow is also called

\hydrodynamic 
ow" in view of the fact that the compressibility of water is very

small. Of course, this is only a naming convention, and does not imply that water

is perfectly incompressible which is false. Further, the term \hydrodynamic" is also

used to distinguish the dynamics of a 
ow which do not depend on compressible e�ects

(the hydrodynamics) from the dynamics of a 
ow which do depend on compressible

e�ects (the acoustic waves). In other words, the name \hydrodynamic" is general

term, and is somewhat di�erent from the precise notion of incompressibility which is

the subject of this section.

In incompressible 
ow, the continuity equation is replaced with the condition that
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the divergence of the velocity is zero,

@Vx

@x
+
@Vy

@y
+
@Vz

@z
= 0 (2.71)

Also, the term (c2s=�) @�=@x is usually written as @P=@x so that the density

variable does not appear at all in the equations of 
uid 
ow. Aside from this change,

the momentum equations 2.58{2.60 remain unchanged in all other respects.

The rationale behind the incompressible 
ow idea is to assume that the time

derivative and the spatial variations of the density are very small compared to the

velocity gradients. Such an assumption originates from the fact that the density

gradient @�=@x is proportional to the derivatives of velocity divided by the square

of the speed of sound, (see the momentum Navier Stokes equations). Because the

ratio V=cs is very small in the case of subsonic 
ow, the density gradient is very small

compared to the derivatives of the velocity.

Physically, the condition of incompressibility (zero divergence of the velocity) im-

plies that any disturbances of the 
uid propagate with in�nite speed to other parts

of the 
uid. This is only an approximation because any disturbances of a real com-

pressible 
uid propagate with a �nite speed of sound to other parts of the 
uid via

acoustic waves. The advantage of assuming an in�nite speed of sound propagation is

to allow us to solve the Navier Stokes equations without having to follow the prop-

agation of acoustic waves step by step. Thus, the numerical solutions of the Navier

Stokes equations can be speeded up, and the theoretical analysis of the equations can

be simpli�ed in many cases as well.

Another way of understanding the incompressible 
ow approximation is to con-

sider the following situation which appears paradoxical at �rst sight. A solution of

the incompressible 
ow equations is steady 
ow inside long pipes, known as Hagen-

Poiseuille 
ow (Landau&Lifshitz [32, p.51]). Let us consider a two-dimensional pipe

with the walls located at y = 1 and y = 0, and let us assume a constant pressure
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gradient along x,
@P

@x
=

c2s
�0

@�

@x
= constant (2.72)

where the adiabatic relation between pressure and density is used. As stated earlier,

the density gradient is extremely small because the speed of sound is extremely large

compared to the 
ow speed; which is the reason why we can neglect the density

variations from the continuity equation and arrive at the incompressible 
ow condition

r � ~V = 0. The steady state solution of the above problem is a vanishing vertical

velocity v = 0, and a parabolic pro�le for the horizontal velocity u,

u(y; t) =
1

2

 
c2s
� �0

@�

@x

!
y (y � 1) (2.73)

By substitution, we can show that the above solution satis�es the momentumNavier

Stokes equations, the condition of incompressibility, and the boundary conditions of

vanishing velocity at the walls. However, a paradox arises when we try to substi-

tute the above solution into the continuity equation 2.57. The continuity equation

expresses the conservation of 
uid, and it must be satis�ed always independent of the

approximations that we introduce. In expanded form we have,

@�

@t
+ u

@�

@x
+ v

@�

@y
+ �

@u

@x
+ �

@v

@y
= 0 (2.74)

All the terms except u@�=@x vanish according to our solution, therefore the term

u@�=@x must vanish also. This is an apparent contradiction because we know that

the density gradient @�=@x must be very small, but not identically zero. The term

u@�=@x expresses the change of density which is caused by the 
ow, and from a

physical point of view there must be another term that balances this change of density,

no matter how small it may be. The question is \which term balances the change of

density?"

One way of resolving the paradox is to add a correction to the �@u=@x term

in order to balance equation 2.74. This is a reasonable assumption in view of the

steadiness and symmetry of the problem along the y direction. Thus, we assume
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that the horizontal velocity has a very small but non-vanishing variation in x, and

we introduce a modi�ed velocity ~u with a correction �(x),

~u = u [1 + �(x)] (2.75)

The continuity equation is satis�ed to �rst order in � (that is, the error is of order �2)

if the correction � is as follows,

�(x) = �
 
1

�0

@�

@x

!
x (2.76)

Thus, we have found that the horizontal velocity has a very small but non-vanishing

variation in x. Our original solution must be modi�ed according to the following

formula,

u(y; t) =
1

2

 
c2s
� �0

@�

@x

!
y (y � 1)

"
1 �

 
1

�0

@�

@x

!
x

#
(2.77)

The importance of the above correction is to helps us understand better the approx-

imation of incompressible 
ow. In practice, the correction is not very useful because

it is exceedingly small. In particular, if the size of the velocity is of order unity

u � 1 cm/s, then the normalized density gradient (1=�0)@�=@x is of the order 1=c2s

which is about 10�9 in air at room temperature and atmospheric pressure. If we can

measure the 
ow velocity with an accuracy of 10�3 (3 decimals), then the above cor-

rection to the velocity becomes noticeable between the ends of a pipe that is 10 km

long. This is of course unrealistic because other e�ects that we have not modeled

here become important in a 10 km pipe.

The above analysis of Hagen-Poiseuille 
ow in a pipe is an example where the

incompressible 
ow approximation works very well. By contrast, the 
ow of air

inside a wind musical instrument is an example where the acoustic waves interact

with the hydrodynamics of the 
ow. In such a situation, the incompressible 
ow

approximation is inapplicable, and the compressible Navier Stokes equations must be

used instead. Below, the wave equation is discussed because it is useful background

material for the simulations of 
ue pipes.
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2.5 The wave equation

In this section, the wave equation is derived from the compressible Navier Stokes

equations, and further some interesting solutions of the wave equation are described.

An acoustic wave in a compressible medium is usually de�ned as an oscillatory mo-

tion of small amplitude [32, p.251]. The oscillation arises through the interchange

of energy between the kinetic and the potential forms; namely, the velocity and the

density (pressure) of the compressible medium. By means of this oscillatory mecha-

nism, any disturbance of the density and/or the velocity of the compressible medium

propagates inside the medium and re
ects o� boundaries. The speed of propagation

is characteristic of the medium, and it is called the speed of sound.

2.5.1 Linear inviscid

In order to derive the wave equation from the Navier Stokes equations, we consider

the simplest situation from an acoustic point of view. Namely, we assume that the

mean 
ow is zero, and that the amplitude of the acoustic disturbance is small. Math-

ematically, this means that the 
uid velocity and density can be written as follows,

� = �0 + �0 �0 constant, �0 � �0

~V = ~V0 + ~V 0 ~V0 = 0; ~V 0 small
(2.78)

We also consider the compressible Navier Stokes equations in their original form,

@�

@t
+ (~V � ~r�) + �(r � ~V ) = 0 (2.79)

@Vj

@t
+ Vk

@Vj

@xk
+

c2s
�

@�

@xj
� �r2Vj � �

@(r � ~V )
@xj

= 0 (2.80)

where j = 1; 2; 3 stands for the Cartesian directions x; y; z. If we substitute the

density and the velocity given by equation 2.78 in the above Navier Stokes equations,

and neglect small terms that are quadratic in the acoustic amplitude, we obtain,

@�0

@t
+ �0r � ~V 0 = 0 (2.81)
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@V 0

j

@t
+
c2s
�0

@�0

@xj
= 0 (2.82)

In the above calculation, the quadratic terms (~V 0 � ~r�0) and V 0

k @V
0

j =@xk are omitted

from the continuity and the momentum equations respectively. Also, the approxi-

mation (�0 + �0) � �0 is used whenever the density � appears as a multiplicative

factor. Further, the viscosity terms are omitted because they have a negligible e�ect

on the acoustic waves, as we shall see in section 2.5.2. These may seem a lot of

simpli�cations, but they are very reasonable for sound waves of small amplitude in

air.

To proceed further, we try to obtain an equation involving the density only. We

di�erentiate the continuity equation 2.81 with respect to time, and the momentum

equation 2.82 with respect to the spatial direction xj in order to eliminate the velocity

from the density equation. In two dimensions we have three equations. We use the

notation u = V1 and v = V2 for the x; y components of the velocity,

@2�0

@t2
+ �0

 
@2u

@x@t
+

@2v

@y@t

!
= 0 (2.83)

@2u

@x@t
+

c2s
�0

@2�0

@x2
= 0 (2.84)

@2v

@y@t
+
c2s
�0

@2�0

@y2
= 0 (2.85)

By subtracting the above momentum equations from the continuity equation, we

obtain a linear wave equation for the acoustic density,

@2�0

@t2
� c2s

 
@2�0

@x2
+
@2�0

@y2

!
= 0 (2.86)

A complementary approach is to try to obtain an equation involving the acoustic

velocity only. To do so, we di�erentiate the continuity equation 2.81 with respect

to x and y, and the momentum equation 2.82 with respect to time. Then, we can

eliminate the density from the velocity equations to obtain,

@2u

@t2
� c2s

(r � ~V 0)

@x
= 0 (2.87)
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@2v

@t2
� c2s

(r � ~V 0)

@y
= 0 (2.88)

or equivalently,
@2u

@t2
� c2s

 
@2u

@x2
+

@2v

@x@y

!
= 0 (2.89)

@2v

@t2
� c2s

 
@2u

@x@y
+
@2v

@y2

!
= 0 (2.90)

The above appear to be coupled equations in x, y; however, the fact that we have

omitted viscosity from our acoustic model (see equation 2.82) can actually decouple

the above equations. By calculating the curl of equation 2.82, we can show that the

vorticity of the acoustic 
ow is constant, as follows,

@

@t

 
@v

@x
� @u

@y

!
=

c2s
�0

 
@2�0

@x@y
� @2�0

@y@x

!
= 0 (2.91)

Furthermore, a reasonable assumption for acoustic waves is that the acoustic motion

starts from an initial state of rest, so that the vorticity is initially zero. The above

equation shows that the vorticity remains always zero. Thus, the following condition

of integrability is satis�ed (Courant [13, p.353]),

d� = u dx + v dy (2.92)

and the acoustic velocity is the gradient of a scalar potential function, denoted here by

�. The above acoustic potential is a special case of the general potential model (zero

vorticity approximation) that is discussed in section 2.4.1. We have the relations,

@�=@x = u

@�=@y = v

@2u=(@x@y) = @3�=(@x2@y) = @2v=@y2

@2v=(@x@y) = @3�=(@x@y2 = @2u=@y2

(2.93)

By substituting the above into equations 2.89, 2.90, we obtain the linear wave equation

for each component of the velocity,

@2u

@t2
� c2s

 
@2u

@x2
+
@2u

@y2

!
= 0 (2.94)
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@2v

@t2
� c2s

 
@2v

@x2
+
@2v

@y2

!
= 0 (2.95)

By substituting the potential � in equation 2.82, and integrating along xj as follows,Z "
@2�

@t@xj
+
c2s
�0

@�0

@xj

#
dxj = 0 (2.96)

we obtain
@�

@t
+ C(t) = �

 
c2s
�0

!
�0 (2.97)

where C(t) is an integration constant that can only depend on time. Therefore,

it can be absorbed in the velocity potential without a�ecting the spatial gradient.

For example, we can rede�ne the potential as follows (for a related problem see

Newman [34, p.108]),

�0 = �+
Z t

C(� ) d� (2.98)

but we keep the same symbol � below for simplicity. Thus, we obtain a simple relation

between the acoustic density and the acoustic potential,

�0 = �
 
�0

c2s

!
@�

@t
(2.99)

and also a linear wave equation for the potential �

@2�

@t2
� c2s

 
@2�

@x2
+
@2�

@y2

!
= 0 (2.100)

A typical solution of the above linear wave equation is a plane wave traveling along

the positive x direction,

�(t; x; y) = f(x� c t)

u(x; y; t) =
�

f (x� c t)

�0(t; x; y) = (�0=c)
�

f (x� c t)

(2.101)

where f(x) is an arbitrary di�erentiable function of one variable, and
�

f (x) denotes

its �rst derivative. The negative-traveling wave f(x+ c t) is also a solution. Because

the wave equation is linear, any superposition of solutions is also a solution. In



CHAPTER 2. THE MOTION OF FLUIDS 76

particular, the complex exponentials that satisfy the wave equation can be used to

represent almost any solution as a sum (integral) of complex exponentials according

to Fourier's decomposition theorem (Courant [13, p.318]). The complex exponentials

that satisfy the wave equation are as follows,

u(x; y; t) = ei(k x �! t) (2.102)

The above complex exponential is a periodic traveling wave that advances in the

positive x direction with increasing time. The speed of propagation is the speed of

sound cs, and we have the following relations,

cs =
!

k
= f � (2.103)

� =
2�

k
(2.104)

! = 2� f (2.105)

where k is the spatial frequency, � is the wavelength, f is the time frequency in cycles

per second (Hz), and ! is the time frequency in radians per second. Because of the

linearity of the wave equation, it is valid to calculate with complex exponentials which

are more convenient than sines and cosines, as long as we are consistent in taking

the real part (or the imaginary part) of our expressions at the beginning and the end

of the calculation. For example, the complex exponential solution of equation 2.102

\contains" the following two physical solutions,

u(x; y; t) = cos (k x � ! t)

u(x; y; t) = sin (k x � ! t)
(2.106)

depending on whether we choose the real or the imaginary part.

Apart from traveling waves, there are also stationary waves which means that the

time variation is decoupled from the spatial variation. Stationary waves arise when

we impose �xed boundary conditions such as two walls at which the acoustic velocity

must vanish. The simplest way to construct a stationary wave is to combine two
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periodic traveling waves that are identical except for traveling in opposite directions.

For example,
1

2

�
ei(k x +! t) + ei(k x �! t)

�
= ei(k x) cos(! t) (2.107)

which corresponds to the following two stationary waves,

u(x; t) = cos (k x) cos(! t)

u(x; t) = sin (k x) cos(! t)
(2.108)

A stationary wave possesses nodes and loops that are �xed in space. A node is a point

where the amplitude vanishes, while a loop is a point where the amplitude achieves

maximum values during one period of oscillation. In the case of stationary waves,

the velocity nodes are density loops, and the density nodes are velocity loops. To

see this, we calculate the density that corresponds to the velocity of equation 2.108

by di�erentiating in space and integrating in time as prescribed by the continuity

equation 2.81. We obtain,

�0(x; t) = ��0 (k=!) sin (k x) sin(! t)
�0(x; t) = �0 (k=!) cos (k x) sin(! t)

(2.109)

We see that the loops and nodes are interchanged between density and velocity in

the case of stationary waves. This is in contrast to free sinusoidal traveling wave

(equation 2.101) where the loops and nodes occur at the same locations for the velocity

and the density, and furthermore the loops and nodes are moving with time.

Finally, it should be noted that the solutions of the wave equation 2.82 for a

compressible medium such as air are longitudinal waves in the sense that the acoustic

velocity oscillates along the same direction as the direction of wave propagation. By

contrast, the sound waves of a violin string are transversal oscillations in the sense that

the acoustic motion is at right angles to the direction of propagation along the string.

We can examine mathematically the longitudinal character of the wave equation 2.82

by trying to �nd a transversal solution as follows,

u(x; y; t) = u(y; t)

v(x; y; t) = v(x; t)
(2.110)
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Then, the divergence of velocity is identically zero. The x momentum equation 2.82

implies that the density must be constant with x because the velocity u(y; t) only

varies with y. Similarly, the y momentum equation 2.82 implies that the density

must be constant with y because the velocity v(x; t) only varies with x. The inte-

gration of the continuity equation 2.81 says that the density �0 must be constant in

time. Consequently, there can be no wave motion at all. In fact, if we integrate

equation 2.82, we obtain

u(y; t) = �c2s(@�0=@x) t + u(y; 0)

v(x; t) = �c2s(@�0=@y) t + v(x; 0)
(2.111)

which says that the velocity becomes in�nite with time. In other words, there are

no physically relevant solutions in this case. We note that if we include viscosity

in the wave equation, then we can obtain transverse oscillations of velocity that are

physically relevant. We will examine these in the next section. However, the density

of these transverse waves is also constant in time, so that the transverse waves can

not be considered to be sound waves.

Having introduced the linear wave equation and some of its solutions, we discuss

in the next section the solutions of a modi�ed wave equation that includes the e�ects

of viscosity. The modi�ed equation of the next section is still linear, and thus it is

straightforward to solve analytically.

2.5.2 Viscous decay of sound

In this section, the e�ect of viscosity on sound waves is calculated exactly in the

special case of one-dimensional plane waves. 1 To this end, we retain the viscous

terms of the Navier Stokes equations that we omitted earlier in equation 2.82. In

1This problem is also discussed in a slightly di�erent way in Rayleigh [42, p.317], Lamb [31,

p.647], and Morse&Ingard [33, p.285].
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place of equations 2.81, 2.82 we have the following,

@�0

@t
+ �0

 
@u

@x
+
@v

@y

!
= 0 (2.112)

@u

@t
+

c2s
�0

@�0

@x
� �

 
@2u

@x2
+
@2u

@y2

!
� �

 
@2u

@x2
+

@2v

@y@x

!
= 0 (2.113)

@v

@t
+
c2s
�0

@�0

@y
� �

 
@2v

@x2
+
@2v

@y2

!
� �

 
@2u

@x@y
+
@2v

@y2

!
= 0 (2.114)

In the above equations we retain both the shear and the bulk viscosity terms because

they have comparable size in the case of acoustic waves. We also inquire whether

we should retain the nonlinear advection terms (u@u=@x); however, these terms are

smaller than the viscous terms as we shall see in section 2.5.4, when the amplitude

of the sound wave is su�ciently small, which we assume to be so.

We look for a plane wave solution with v = 0 and u = u(x; t) , so that the

equations simplify as follows

@�0

@t
+ �0

 
@u

@x

!
= 0 (2.115)

@u

@t
+

c2s
�0

@�0

@x
� (� + �)

 
@2u

@x2

!
= 0 (2.116)

By di�erentiating and combining the above equations, we obtain

@2u

@t2
�
 
c2s + ~�

@

@t

!
@2u

@x2
= 0 (2.117)

where we denote ~� = (� + �) for brevity. We look for general solutions of the form,

u = ei (k x � ! t) � � t (2.118)

where k; !; � are real numbers, and they correspond to a spatial frequency, a time

frequency, and a time constant of exponential decay. By substituting the above into

the wave equation 2.117, we obtain,

(i ! + �)2 = �k2
�
c2s � ~� (i ! + �)

�
(2.119)
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which can solved exactly to give,

� =
k2 ~�

2
(2.120)

!

k
= cs

vuut1 +
k2 ~�2

4c2s
(2.121)

Therefore, we have obtained a periodic traveling wave solution that decays with a

time constant � given by equation 2.120. The density function that corresponds to

the velocity of equation 2.118 can be calculated using the continuity equation, and it

is as follows,

�0 =
i � + !

�2 + !2
(k �0) e

i (k x � ! t) � � t (2.122)

By superposing two periodic traveling solutions that travel in opposite directions (the

opposite traveling solution can be obtained by negating the time frequency ! in the

above equations), we obtain a stationary solution,

u = (1=2) e��t
�
ei(kx� !t) + ei(kx+ !t)

�
= e��t ei k x cos(! t) (2.123)

�0 =
k �0 e

��t

�2 + !2
ei k x (i � cos(! t) � i ! sin(! t)) (2.124)

By taking the imaginary part of the above expressions, we can obtain the following

stationary solution in real numbers,

u = e��t sin k x cos(! t) (2.125)

�0 =
k �0 e

�� t

�2 + !2
(�! cos(k x) sin(! t) + � cos(k x) sin(! t)) (2.126)

Returning now to equation 2.120 for the decay constant, we can see that large spa-

tial frequencies (short wavelength) decay faster than small spatial frequencies (long

wavelength). However, the decay is extremely slow even for very large spatial frequen-

cies. To see this, we use the values cs = 34400 cm/s and ~� = (�+ :5�) = 0:225 cm2=s,

and we write
!

k
= cs

p
1 + � (2.127)
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The correction � is very small for all frequencies of interest,

� =
k2 ~�2

4c2s
= k2 �1:069�10�11 (2.128)

Therefore,
!

k
' cs (2.129)

In particular, � is equal to 1=100 when k is about k = 3 �104. The correction �

decreases quadratically with smaller frequencies, so we can safely approximate ! =

cs k for all spatial frequencies up to k = 3�104. Furthermore, the frequency k = 3�104

is larger than the maximum frequency k = 6:28 �103 at which the Navier Stokes

equations are applicable (see section 2.1). Therefore, the relation ! = cs k is valid for

all frequencies of interest.

We can calculate how many cycles, denoted by N , it takes for a sinusoidal acoustic

wave to decay to one-tenth of its original value by setting,

e��N2�=! = 1=10 (2.130)

By combining the above relation with equation 2.120, and the relation k = !=cs, we

obtain a relation between the frequency of the acoustic wave and the number of cycles

N it takes for the wave to decay to one-tenth of its initial value.

f =
!

2�
=

1

2�

 
ln 10

2�N

!
2c2s
~�

=
6:135 �108

N
(2.131)

For example, a frequency of 1 kHz takes 613500 cycles to decay to one-tenth of its

value. The duration of this decay is about 613:5 s and corresponds to about 210 km

for a traveling wave. Viscous e�ects are more pronounced at higher frequencies, as we

can see from the following table (we are considering air under conditions of standard

temperature and pressure).

Very high frequencies (above 1 MHz) decay very quickly in contrast to frequencies in

the low range less than 20 kHz which decay extremely slowly.
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f � N time distance

1 kHz 34 cm 613500 613:5 s 210 km

100 kHz 0:34 cm 6135 0:61 s 21 m

1 MHz 0:034 cm 613 0:006 s 21 cm

10 MHz 0:0034 cm 61 0:00006 s 0:21 cm

Table 2.1: Viscous decay of acoustic waves in free space.

It should be noted that an alternative way of obtaining the above result is to look

for a solution which decays with distance instead of time. To �nd a solution that

decays with distance, we expect that the decaying exponential in time,

e�� t (2.132)

should be replaced by a decaying exponential in space,

e
� �

cs
x

(2.133)

based on the relation k x = ! t for the propagation of a traveling wave. In fact, if

we substitute a trial solution of the form (a decaying wave that travels to the right

x > 0),

u = ei (k x � ! t) � � x (2.134)

into the linear dissipative wave equation 2.117, we can show that � is equal to �=cs

as expected,

� =
k ! ~�

2 c2s
=

k2 ~�

2 cs
=

�

cs
(2.135)

Although the decay in space is similar to the decay in time, the two solutions di�er

in some ways. Whereas the time solution corresponds to a free traveling wave or a

standing wave, the space solution corresponds to a wave emanating from an oscillating

boundary condition, and it expresses the viscous decay of sound with distance from

the source. The algebra of the two solutions is di�erent also. For the solution in space

we have the equation,

� !2 = c2s (�
2 � k2) � 2 i � k c2s + i ~� ! (k2 � �2) � 2 ~� ! � k (2.136)
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Equating the imaginary parts, we obtain a quadratic equation for �, and we choose

the decaying solution for positive x > 0 versus an unphysically-growing solution,

� =
�k c2s
~� !

�
1 �

q
1 + (~� !=c2s)

2

�
' k ! ~�

2 c2s
=

�

cs
(2.137)

Equating the real parts, and using the above approximate �, we �nd ! in terms of k,

!

k
= cs

vuut1 + 3
~�2!2

4 c4s
' cs (2.138)

Thus, we have a solution valid for x > 0,

u = ei (k x � ! t) � � x (2.139)

�0 =
k + i �

!
�0 e

i (k x � ! t) � � x (2.140)

The above solution decays very slowly with distance x for frequencies less than

100 kHz, as discussed previously.

In the case of musical instruments (acoustic frequencies less than 20 kHz), the

above decaying solutions play a very small role. In particular, there are other e�ects

such as the expansion of a wave in space (1=r2 in three-dimensional space) which can

reduce the power of a traveling wave much sooner than the viscous decay considered

above. In the case of waves enclosed within pipes, the dominant mechanisms of loss

of acoustic energy are the exchange of heat with the walls, and also the transverse

viscous forces as opposed to the longitudinal viscous forces that we have consid-

ered above. We will consider a simple example of transverse viscous forces below.

The e�ect of heat transfer with the walls is ignored by the adiabatic model of sound

which assumes no heat transfer. Thermal e�ects are discussed in Kittel&Kroemer [28,

p.434]. Transverse friction in combination with thermal e�ects are discussed in Lan-

dau&Lifshitz [32, p.301], and also Morse&Ingard [33, p.286].

2.5.3 Shear waves

This section analyzes shear waves which are transverse waves as opposed to the lon-

gitudinal waves of the previous section. These shear waves are another solution of
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the dissipative wave equations 2.112{2.114. They are not proper acoustic waves how-

ever, because they do not involve any oscillations in density. In addition, we will see

that they are solutions of the incompressible Navier Stokes equations as well, without

any assumptions of linear acoustics such as small velocity amplitude. Physically, the

shear waves correspond to the 
ow that arises when a rigid plate performs tangential

oscillations along its own plane, and the 
uid above the plate follows the oscillations

because of shear viscous forces. To obtain the shear waves mathematically, we look

for solutions of the form

u(y; t) and v = 0 (2.141)

If we substitute the above expressions in the dissipative wave equations 2.112{2.114,

we obtain
@�0

@t
= 0 (2.142)

@u

@t
= �

@2u

@y2
� c2s

�0

@�0

@x
(2.143)

@�0

@y
= 0 (2.144)

Immediately, we conclude that �0 does not vary with y and t. Further, since we

are looking for a velocity u(y; t) that does not vary with x, equation 2.143 implies

that @�0=@x is a constant. To be careful, we should actually consider the possibility

that there are velocity variations in x which are extremely small but non-vanishing

(see section 2.4.3 on the paradox of incompressible 
ow). Then, according to equa-

tion 2.143 the variations of the density gradient @�0=@x must be even smaller than the

velocity variations by a factor of 1=c2s. Thus, we can safely conclude that the density

gradient @�0=@x is constant based on equation 2.143.

An alternative way of deriving equation 2.143 is to consider the incompress-

ible Navier Stokes equations discussed in section 2.4.3 instead of the acoustic equa-

tions 2.112{2.114. If we assume a velocity of the form u(y; t) and v = 0, the diver-

gence of the velocity becomes zero, so that incompressibility is satis�ed. Then, a

substitution in the momentum Navier Stokes equations 2.58{2.60 produces the same
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equation 2.143 that we obtained above in the acoustic approximation except that now

we do not require linear acoustics that the velocity amplitude is small.

To proceed further and to solve equation 2.143, we observe that the equation is

linear so that di�erent solutions can be superimposed. One solution follows by letting

the time derivative of the velocity be zero; that is, by assuming steady 
ow. Then,

we obtain the Hagen-Poiseuille 
ow that we discussed earlier in section 2.4.3, and has

the form

u(y; t) =
1

2A

 
c2s
� �0

@�

@x

!
Ay2 + B y (2.145)

for arbitrary constants A and B that can be used to satisfy boundary conditions. This

solution can be superimposed with the shear wave solution that we obtain immediately

below.

The shear wave solution can be obtained by setting the density gradient, which

is constant as we argued above, equal to zero, and by substituting a trial solution of

the form

u(y; t) = ei (k y � ! t) � � y (2.146)

We �nd,

� i ! = � (�2 � k2 � i 2� k) (2.147)

which can be solved exactly to give,

� =
!

2 k nu
and � = k =

r
!

2 �
(2.148)

u(y; t) =

0B@e�
r

!

2 �
y

1CA
0B@ei

r
!

2 �
y

1CA �
e� i ! t

�
(2.149)

If we impose the boundary condition that there is a solid wall at y = 0 which is

oscillating at a frequency of ! radians per second uniformly along its own plane (the

x-axis), then the above expression becomes a simple shear wave,

u(y; t) = e
�
r

!

2 �
y
cos(

r
!

2 �
y � ! t) (2.150)
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The above shear wave decays very fast with increasing distance from the oscillating

boundary. In particular, the penetration depth at which the amplitude decreases by

a factor of 10 is given by,

� = (ln 10)

s
2 �

!
(2.151)

For a frequency of 1 kHz in air at room temperature and atmospheric pressure the

penetration depth is about 1:6 �10�2 cm which is a very small distance.

The above shear waves provide an estimate of the viscous boundary layer of acous-

tic waves that are traveling along the length of a pipe. An plane wave inside a hori-

zontal pipe oscillates back and forth along the x direction and creates friction against

the walls in an analogous way to the oscillating shear waves above. Of course, there

is one di�erence that the acoustic waves oscillate sinusoidally in x as opposed to

uniformly in x that we considered above for an oscillating wall. Nevertheless, the

penetration depth that we calculated above provides an approximate estimate of the

viscous boundary layer of acoustic waves. It also shows that the e�ects of shear

friction are much more pronounced than the e�ects of longitudinal friction that we

considered in the previous section because the shear wave decays to zero within a

very short distance in contrast to the longitudinal decay.

Another application of the shear wave solution that we obtained above is the

testing of numerical methods, as we will see in section 4.5. In particular, for the

purpose of numerical testing it is convenient to impose two boundary conditions: a

non-moving wall at y = 0, and an oscillating plate at y = 1. We can satisfy these

boundary conditions (Landau&Lifshitz [32, p.45]) if we constrain the general shear

wave solution given by equation 2.149 to be of the form,

u(y; t) = e� i ! t
sin

�
(1 + i)

r
!

2 �
y

�
sin

�
(1 + i)

r
!

2 �

� (2.152)

By expanding the sines of imaginary quantities in terms of hyperbolic sines and

cosines, and performing some algebra, we can obtain a real solution for the problem
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of an oscillating plate above a non-moving plate. The solution is presented and is

used for numerical testing purposes in section 4.5.

In the next section, the relative size of the acoustic terms is examined when an

acoustic wave is substituted into the Navier Stokes equations. This will con�rm some

of the discussions in the previous sections, for example the small e�ects of viscosity on

acoustic waves, and it will also point to the limitations of the linear acoustic theory.

2.5.4 Relative size of acoustic terms

In order to estimate the relative size of the acoustic terms in a complete wave equation

that includes both nonlinear advective terms and viscous terms, we consider a one-

dimensional Navier Stokes equation for the velocity (Morse&Ingard [33, p.862]),

@u

@t
+ u

@u

@x
+
c2

�0

@�

@x
+ ~�

@2u

@x2
= 0 (2.153)

We substitute a typical sinusoidal wave in the above equation where u0 is the wave

amplitude,

u(x; t) = u0 e
i(kx�!t)

�0(x; t) = (�0=c)u0 e
i(kx�!t)

(2.154)

We can estimate the relative size of the terms, as follows, where we normalize against

the size of the �rst term,

(@u=@t) (u@u=@x) ((�0=c) @�
0=@x) (~� @2u=@x2)

u0! u20 k u0 k c u0 k
2 ~�

1 u0=c 1 k2 ~�=c

(2.155)

If we compare the nonlinear advective term and the viscous term above, we obtain

the result,
u@u=@x

~� @2u=@x2
=

u20 k

u0 ~� k2
=

u0

k ~�
(2.156)

Therefore, the viscous decay of longitudinal waves that we calculated in section 2.5.2

makes sense when the amplitude u0 of the wave is signi�cantly less than k ~�. For
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example, we have the following numbers for ~� = 0:225 cm2=s,

f � u0 = k ~� pressure level

1 kHz 34 cm 0:04 cm/s 78 dB

100 kHz 0:34 cm 4:2 cm/s 118 dB

(2.157)

We calculate the pressure level in decibels using the relation (see section 2.6),

pressure level = 74 + 20 log10(c
2
s �

0) (2.158)

We also use the relation u = cs �
0=�0 for a free traveling wave. The above numbers

indicate that if the frequency is 1 kHz, we can neglect the nonlinear advective terms

in comparison to the viscous e�ects, if the wave amplitude is signi�cantly less than

0:04 cm/s. A factor of 10 would require that the pressure level is less than 58 dB,

which is a very weak sound. Of course, the viscous e�ects increase with higher

frequency, so that the viscous solution of section 2.5.2 applies to a wider range of

sounds when the frequency is high.

Returning to equation 2.155 we can see that both the viscous terms and the

nonlinear advective terms are smaller by a factor of u0=c compared to the remaining

terms, such as the time derivative of velocity. This is the reason why we can neglect

the nonlinear and the viscous terms in many situations and work with the linear

inviscid wave equation. Of course, there are limitations to the linear inviscid theory.

In particular, the above comparison of equation 2.155 assumes a free traveling wave,

and does not apply inside the viscous shear boundary layer where the velocity must

decrease to zero in a very short distance, as we saw in section 2.5.3. In the shear

boundary layer the viscous terms, such as � @2u=@y2, are very large.

In free space the e�ect of nonlinearities on acoustic waves is small if the wave

amplitude is much smaller than the speed of sound. We can estimate some numbers
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as follows, where we use the relation u0=cs = �0=�0 for a free traveling wave,

u0 u0=cs pressure level

34 cm/s 0:001 137 dB

344 cm/s 0:01 157 dB

3440 cm/s 0:1 177 dB

(2.159)

Therefore, nonlinear e�ects in free space become important for very loud sounds only.

An example of a typical nonlinear e�ect is frequency doubling. In particular, if

we have a sinusoidal wave of frequency !,

u = ei (2� x=� � ! t) (2.160)

the nonlinear advective term produces an oscillation of twice the original frequency,

u (@u=@x) =
2�

�
ei (4� x=� � 2! t) (2.161)

The frequency doubling e�ect is one of the reasons why the linear analysis based

on complex exponentials does not work in the nonlinear regime. Of course, there are

many other nonlinear e�ects that we do not understand, and we can not even identify

them.

Although nonlinear e�ects are weak for acoustic waves in free space, this is not

the case for acoustic waves in con�ned space. In particular, a wave in free space

is typically generated by a small source where the acoustic energy is concentrated

initially before expanding as 1=r2 in three-dimensional space. Therefore, near the

source the wave amplitude is large, and nonlinear e�ects can be very important, as

in the case of the air jet in a 
ue pipe. Nonlinear e�ects are the basic mechanism for

ampli�cation of sound in 
ue pipes (Verge94 [56], Hirschberg94 [26]).

Having discussed the limitations of linear acoustic theory in this section, the ques-

tion arises whether it is reasonable to try to distinguish acoustic waves from other

variations of density in nonlinear regimes. This question is important in the computer

simulations of 
ue pipes, and is discussed below.
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2.5.5 Distinguishing acoustic from hydrodynamic

In the subsonic regime, a simple rule for distinguishing acoustic waves from non-

acoustic 
ow is the propagation speed. Acoustic waves propagate at the speed of

sound which is much faster than the speed of non-acoustic or hydrodynamic 
ow.

Hydrodynamic 
ow consists of vortices, boundary layers, etc that are slow-moving

compared to sound waves. This di�erence in speed appears distinctly in the fre-

quency domain. The frequencies of acoustic waves are typically much higher than

the frequencies of non-acoustic 
ow, and we can exploit this property to distinguish

the acoustic waves from slower hydrodynamic variations of density. In the computer

simulations and in the physical experiments, a time series of the density is obtained

by sampling at a �xed location in space. Then, the sound waves are identi�ed as the

relatively high frequencies in the spectrum, and hydrodynamic 
ow as the relatively

low frequencies in the spectrum.

The above distinction between acoustic and non-acoustic motion may become

blurry in regions such as near the jet of a recorder 
ue pipe, where acoustic waves

and hydrodynamic 
ow interact with each other very strongly. The di�culty is that

the amplitude of the acoustic motion and the amplitude of the hydrodynamic motion

are comparable with each other near the jet. The oscillations of the jet generate

acoustic waves and are also driven by acoustic waves, so that the two motions blur

into each other and become one. This is not surprising because the acoustic and hy-

drodynamic regimes are simply di�erent limits (approximations) of one 
ow behavior

that is described by the Navier Stokes equations.

Fortunately in the case of 
ue pipes, the strong interactions between acoustic

waves and hydrodynamic 
ow are limited to the region of the jet ori�ce and the

labium (the edge which the jet impinges). Thus, a little further away from this

sensitive region, the acoustic waves quickly uncouple from the slower hydrodynamic


ow, and we can use the simple criterion of frequency range described above to

distinguish the acoustic waves from the hydrodynamic variations of density.
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temperature density kinematic viscosity speed of sound

degrees centigrade 10�3 gm=cm3 cm2=s cm/s

15 1:226 0:145 34060

20 1:205 0:150 34290

25 1:184 0:155 34581

Table 2.2: Air-constants at various temperatures.

2.6 Appendix: units and constants

This appendix summarizes the units and constants which are employed in the com-

puter simulations. The speed of sound is chosen equal to 34400 cm/s, and the kine-

matic viscosity is set equal to 0:15 cm2=s. These values correspond to a mean constant

temperature of 22 degrees centigrade. Regarding the density, the units of mass are nor-

malized by 0:0012 gm=cm3 so that the mean density is unity. Table 2.2 lists typical

values of the mean density and the kinematic viscosity of air at room temperatures

and atmospheric pressure. These values are taken from Newman [34, p.388]. The

speed of sound of air shown in table 2.2 is calculated using the following formula from

Olson [36, p.10],

cs = 33100
p
1 + 0:00366 T (2.162)

where T is the temperature in degrees centigrade. The above formula for the speed

of sound is equivalent to equation 2.29 which was derived in section 2.3. Note that

the factor 0:00366 of equation 2.162 is equal to 1=273, and 273+T gives the absolute

temperature in degrees Kelvin.

In order to compare intensities of sound, the scale of decibels of sound pressure

level is used (Sekuler&Blake [45, p.298]). The scale of decibels is de�ned as the

logarithm of the ratio of pressure 
uctuation P 0 divided by a normalizing pressure


uctuation P 0

0 which is referred to as the standard pressure level,

20 log10
P 0

P 0

0

(2.163)
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The standard pressure level is the weakest sound that an average human can hear,

and it is approximately,

P 0

0 = 2 �10�4 gm=(cms2) (2.164)

Using the relation P 0 = c2s�
0, the following formula is obtained, 

20 log10
P 0

P 0

0

!
= 74 + 20 log10

"
c2s �0

 
�0

�0

!#
(2.165)

The above formula is useful in the computer simulations where the normalized density


uctuations �0=�0 appears. For the mean density of air, the value �0 = 0:0012 gm=cm3

is used.

It should be noted that the results of two-dimensional simulations can not be

related exactly with the three-dimensional world; in particular, the two-dimensional

density has units gm=cm2 as opposed to gm=cm3 for the three-dimensional density.

One way of avoiding this problem of units is to work with dimensionless ratios such as

�0=�0. Of course, the problem of relating 2D to 3D results involvesmore than matching

the units. For example, there are many 3D e�ects that remain un-modeled in 2D,

such as 3D-expansion of waves versus a 2D-expansion, and also vortex stretching in

3D space (Tritton [54, p.114]) to mention a few (see also section 1.4 and chapter 7).

For completeness, a few de�nitions of dimensionless numbers are summarized

here. Dimensionless numbers can be obtained by combining characteristic lengths of

the 
ow with physical constants such as cs and � that appear in the Navier Stokes

equations. For example, the Mach number is de�ned as the ratio of the 
ow speed

divided by the speed of sound,

M =
U

cs
(2.166)

The 
ow speed U in the above equation is typically the maximum speed or the

mean speed of the 
ow. In the case of subsonic jet phenomena inside 
ue pipes, the

maximum 
ow speed is smaller than the speed of sound cs by a factor of 10 to 1000,

so the Mach number is between 10�1 and 10�3.
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Another important dimensionless number is the Reynolds number which measures

the size of 
uid inertia relative to the size of viscous e�ects (Tritton [54, p.97]). It is

given by the ratio,

Re =
U l

�
(2.167)

where U and l are characteristic velocity and length scales of the 
ow. The choice

of characteristic scales is somewhat arbitrary, and it depends on the geometry of the


ow, and on which features we choose to focus on. For example, in the case of 
ow

through a pipe (Hagen-Poiseuille 
ow, Landau&Lifshitz [32, p.51]), the length l is

typically chosen to be the diameter of the pipe, and the speed U is chosen to be the

mean speed of the 
ow. In the case of jets that emerge from a narrow ori�ce, such

as the ones of section 1.4 and chapter 7, the convention is also to choose l as the

diameter of the ori�ce, and U the mean speed of the 
ow.

A third dimensionless number that is relevant in simulations of subsonic jets is the

Strouhal number, which measures the relative frequency of oscillation. For example, if

a jet executes transverse oscillations relative to its forward motion, then the Strouhal

number can be de�ned as the ratio of the frequency f of oscillations multiplied by

the diameter l of the jet, and divided by the jet speed U ,

St =
f l

U
(2.168)

Other dimensionless numbers in addition to the above can be found in standard

textbooks (Batchelor [3] and Newman [34]) and in specialized areas of 
uid mechanics.

The next chapter begins the discussion of numerical methods.



Chapter 3

Numerical methods for 
uid 
ow

Except for special cases, the Navier Stokes equations of the previous chapter can

not be solved analytically. Therefore, numerical methods must be used. Below, the

basic ideas of �nite di�erence methods are reviewed. Subsequently, an explicit �nite

di�erence method for solving the compressible Navier Stokes equations is described.

Also, an explicit �nite di�erence method for solving the incompressible Navier Stokes

equations is described which is used for numerical testing purposes only. Most of

the ideas presented here can be found in textbooks of computational 
uid dynamics.

Some results which are not easily available in the literature (as far as I know) are

the discussion on why explicit numerical methods are appropriate for subsonic 
ow

in section 3.2.1, and the analysis of the CFL (Courant-Friedrichs-Lewy) condition in

section 3.3.2.

3.1 Numerical grids

The Navier Stokes equations can be solved numerically by introducing a numerical

grid in space and time. For the sake of simplicity, only the spatial dimensions of

the grid are described here. To include a time dimension, we can imagine making

copies of the planar grids shown in �gure 3-1, and stacking them on top of each other.

94
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Figure 3-1: Three simple types of numerical grids: uniform orthogonal, curvilinear,

non-uniform orthogonal.

A numerical grid de�nes a discretization of spacetime, and replaces the continuous

functions of density and velocity �; Vx; Vy by a discrete set of values de�ned at the

nodes of the grid (namely, the points where the grid lines of �gure 3-1 intersect).

Numerical grids are distinguished into staggered or non-staggered depending on

whether the 
uid variables are de�ned exactly at the grid nodes, or halfway between

the grid nodes. For example, the 
uid velocity can be de�ned halfway between the

grid nodes, and the 
uid density can be de�ned exactly at the grid nodes. This

staggered allocation of variables has advantages in some cases (Peyret&Taylor [38]),
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but it is more complex to deal with than a straightforward non-staggered grid where

all the variables are de�ned at the grid nodes. In the present work, non-staggered

grids are employed exclusively.

Numerical grids can be distinguished into uniform or non-uniform. For example,

the grid shown at the top of �gure 3-1 is a uniform orthogonal grid, and the grid

used in section 4.1.1 is a uniform hexagonal grid. In the present work, only uniform

grids are used because they are very simple to program and highly-suited for parallel

computing. Another reason for using uniform grids is that the lattice Boltzmann

method works only with uniform grids as far as is known today. The only way to

extend lattice Boltzmann to non-uniform grids is to employ two grids of di�erent

uniform resolution joined together via interpolation (a technique called composite

grids). This idea for lattice Boltzmann is outlined in section 4.6.2.

Non-uniform grids increase the resolution (density of grid points) in certain re-

gions, while decreasing the resolution in other regions where the 
ow is smooth and

not much is happening. Sometimes, the change of resolution introduces numerical ar-

tifacts. To minimize the artifacts, the resolution of the grid should be varied smoothly,

if possible. On the other hand, smoothness does not guarantee the absence of arti-

facts. In particular, acoustic waves are very sensitive to changes of resolution, and

should be carefully tested in regions where the resolution is changing.

Non-uniform grids include the composite grids mentioned above, and also curvi-

linear and non-uniform orthogonal grids which are shown at the middle and bottom

of �gure 3-1. In the case of curvilinear grids, a coordinate transformation from the

curvilinear space to a uniform orthogonal space (called logical space) is usually em-

ployed. The Navier Stokes equations are transformed to new coordinates, and �nite

di�erences are applied to the transformed equations on the logical grid [52]. Curvi-

linear grids are often designed to be body-conforming in order to approximate closely

the shape of smooth boundaries such as airfoils.

An alternative to coordinate transformations is to discretize the Navier Stokes
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equations directly in the physical space by taking �nite di�erences based on the local

spacings around each grid point (Peyret&Taylor [38, p.326]). Direct discretization in

the physical space is typically used in the case of non-uniform orthogonal grids, and

also in the case of unstructured non-uniform grids described below.

Both the curvilinear and the non-uniform orthogonal grids of �gure 3-1 are well-

structured grids. By contrast, there are also unstructured non-uniform grids (not

shown here) where the grid points are \layed-out" with almost complete freedom

in order to match the boundaries and the areas where higher resolution is needed

(Camp&et al. [6]). Unstructured grids are very popular and very promising. A lot of

research is currently being done to �nd good ways of parallelizing unstructured grids.

The above catalogue of numerical grids should put in perspective the uniform

grids which are used here. Uniform grids are not the most e�cient grids that are

possible, but they are very simple to use, and very easy to parallelize. In the next

section, the choice between explicit and implicit methods is discussed.

3.2 Explicit versus implicit

Numerical methods for 
uid dynamics can be distinguished into explicit and implicit.

In the case of an explicit method, the future value V (t +�t; x; y) of a 
uid variable

V (t; x; y) at the grid point (x; y) depends only on the present and past values at

neighboring points. In other words, an explicit method uses only local interactions to

calculate the future values of density and velocity. An example of an explicit method

is shown graphically at the left side of �gure 3-2 with the time axis increasing in the

vertical direction. Here, the future value of the central node depends on the present

value of the central node and also on the present values of the four neighbors.

In the case of an implicit method, the future value V (t+�t; x; y) of a 
uid variable

V (t; x; y) at the grid point (x; y) depends on the future values of neighboring nodes

such as V (t + �t; x + �x; y + �y) (right side of �gure 3-2). This implies that the
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Figure 3-2: Explicit and implicit discretizations in two-dimensional space with the
time axis increasing vertically.

neighboring node V (t+�t; x+�x; y+�y) depends on other nodes further down the

grid in a similar way, for example V (t+�t; x+2�x; y+2�y). Consequently, an im-

plicit method couples together distant nodes, and introduces a large matrix equation

that extends the length of the numerical grid. The matrix equation makes implicit

methods more stable than explicit methods, but also more di�cult to parallelize.

Explicit methods are very simple, ideally scalable, and highly suitable for large

parallel computers with small communication capabilities (see chapter 6). However,

explicit methods require small integration time steps in order to remain numerically

stable. By contrast, implicit methods are challenging to parallelize, and have large

communication requirements. However, implicitmethods can use much larger integra-

tion time steps than explicit methods. Because of these di�erences between explicit

and implicit methods, the decision of which method to use depends on the available

computer system and on the problem's requirements regarding the integration time

step. For instance, the simulation of subsonic 
ow requires small integration time

steps in order to follow the fast-moving acoustic waves (see below). Thus, an explicit

method is generally a good choice for subsonic 
ow.
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A possibility that deserves to be explored in the future is intermediatemethods be-

tween explicit and implicit. By this, I do not mean semi-implicit methods where some

terms of the Navier-Stokes equations are discretized implicitly and others explicitly.

Also, I do not mean \alternating directions" (Peyret&Taylor [38]) where the matrix

equation is split into smaller matrices that are solved in succession: �rst along the

x-direction, then along the y-direction, then along the z-direction. Such approaches

reduce the size of the matrix that accompanies an implicit method, but still produce

a matrix that extends the length of the numerical grid, and presents formidable dif-

�culties for parallel computing. Instead, the real breakthrough would be to develop

numerical methods that have the stability properties of implicit methods without us-

ing matrices that extend the whole grid. Such \intermediate" methods would retain

some of the locality of explicit methods that is very important for parallel computing.

An e�ort towards this direction in the context of the di�usion equation is discussed

in [2] and references therein.

3.2.1 Small integration time steps for subsonic 
ow

The integration time step �t in simulations of subsonic 
ow must be small both

for explicit and implicit methods. An approximate constraint on the numerical

speed �x=�t of explicit methods can be obtained from the CFL condition (Courant-

Friedrichs-Lewy) which says that the domain of numerical dependence must include

the domain of physical dependence. The CFL condition must be satis�ed in order

to be able to simulate the physical phenomenon. In the case of simple hyperbolic

problems (such as the wave equation), it can be shown that the CFL condition is also

a necessary condition for the stability of explicit methods (Courant&et al. [14]). The

CFL condition can be written approximately as follows,

�x

�t
� cs (3.1)
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where cs is the propagation speed of acoustic waves. In other words, the CFL condi-

tion requires that the numerical speed �x=�tmust be at least as large as the physical

speed. A more accurate formula for the CFL condition is derived in sections 3.3.1

and 3.3.2.

In the case of implicit methods, the CFL condition can not be applied directly

because the matrix of an implicit method introduces dependencies (interactions) be-

tween distant nodes along the entire length of the numerical grid. Therefore, the

numerical speed of an implicit method is, in some sense, the length the grid divided

by �t, which is a very large numerical speed. On the other hand, this speed can not

be compared with the physical speed of acoustic waves in a meaningful way because

the matrix-introduced interactions are not physical interactions. Another di�culty

in trying to interpret the CFL condition in the context of implicit methods is that

many implicit methods are known to be unconditionally stable (Peyret&Taylor [38])

under linear stability analysis. Therefore, such methods can compute a stable solu-

tion (though not necessarily accurate or correct) even when the time step �t is much

larger than the CFL limit. All this shows that the CFL condition is inconclusive in

the case of implicit methods.

An approximate constraint on the numerical speed �x=�t of implicit methods

can be obtained by inquiring whether the computed solution simulates accurately the

physical phenomena under consideration. In the case of acoustic waves that propagate

through the 
uid and re
ect o� obstacles, the time step �t must be small enough to

follow the propagation of acoustic waves. In particular, the product cs�t must be

less than a few �x in order to have enough resolution to simulate the passage and

re
ection of acoustic waves,

�x � cs�t (3.2)

The above constraint arises from the time-scales of the problem, and applies both to

implicit and explicit methods.

As stated earlier, throughout this work only explicit methods are used. In the next
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section, an explicit �nite di�erence method is described for solving the compressible

Navier Stokes equations.

3.3 Compressible �nite di�erence method

Let us consider a uniform orthogonal grid with �x;�y;�z;�t intervals in space and

time. For the sake of brevity, only two spatial dimensions are shown here. The exten-

sion of the method to three dimensions is straightforward. The following abbreviated

notation is used,

�nj;k = �(x0 + j�x; y0 + k�y; t0+ n�t) (3.3)

where x0; y0 denote the space coordinates of the point at the left-bottom corner of

the grid according to a Cartesian coordinate system, and t0 is the starting time of

the integration. Below, variables without any space sub-indices, for example �n+1,

are assumed to be �n+1j;k . Also, the notation u = Vx and v = Vy is used to avoid

confusion with indices. The continuous Navier-Stokes equations in two dimensions

can be written as follows,

@�

@t
+
@(�u)

@x
+
@(�v)

@y
= 0 (3.4)

@u

@t
+ u

@u

@x
+ v

@v

@y
+ c2s

@�

�@x
� �r2u = 0 (3.5)

@v

@t
+ u

@v

@x
+ v

@v

@y
+ c2s

@�

�@y
� �r2v = 0 (3.6)

If we use the following di�erence operators (forward-Euler for time and symmetric

di�erences for space),
@u

@t
! �tu =

un+1 � un

�t
(3.7)

@u

@x
! �xuj;k =

uj+1;k � uj�1;k

2�x
(3.8)

@u

@y
! �yuj;k =

uj;k+1 � uj;k�1

2�y
(3.9)
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@2u

@x2
! �xxuj;k =

uj+1;k � 2uj;k + uj�1;k

�x2
(3.10)

the discretized Navier-Stokes equations can be written as follows,

�n+1 = �n ��t
h
�n�xu

n+1
j;k + �n�yv

n+1
j;k + un+1j;k �x�

n
j;k + vn+1j;k �y�

n
j;k

i
(3.11)

un+1 = un +�t

"
� �n(�xxu

n
j;k + �yyu

n
j;k)�

c2s
�
�x�

n
j;k � un�xu

n
j;k � vn�yu

n
j;k

#
(3.12)

vn+1 = vn +�t

"
� �n(�xxv

n
j;k + �yyv

n
j;k)�

c2s
�
�y�

n
j;k � un�xv

n
j;k � vn�yv

n
j;k

#
(3.13)

Equations 3.12 and 3.13 produce immediately the new velocity at the next time step

t + �t because all the terms of the momentum equations are discretized explicitly

(evaluated at time t). Equation 3.11 however is slightly di�erent from the momentum

equations. The mass continuity equation is discretized in a semi-implicit way which

means that the velocity values at time t + �t are used to compute the new density

value �(t + �t) at time t + �t. In other words, the computation proceeds in two

steps: First, the new velocity is calculated, and then the new density is calculated in

a separate loop. This two-step procedure is very important for numerical stability.

If both the density and the velocity are discretized explicitly, the algebraic system

becomes very unstable. This can be easily checked in numerical experiments, and a

plausible theoretical explanation is given in section 3.3.3.

3.3.1 Numerical stability

Numerical stability conditions for the explicit �nite di�erence method (3.11 to 3.13)

are not known exactly. However, a few approximate estimates can be obtained. First,

the CFL condition says that the domain of numerical dependence must include the

domain of physical dependence. After some manipulations, the following conditions

are obtained (see section 3.3.2 for a detailed derivation),

�x

�t
� (jVxj+ jVyj+ cs

p
2) (3.14)



CHAPTER 3. NUMERICAL METHODS FOR FLUID FLOW 103

or more generally,

�t �
 jVxj
�x

+
jVyj
�y

+ cs

s
1

�x2
+

1

�y2

!�1

(3.15)

To satisfy the above equations, the time step of integration �t must be kept very

small in the case of subsonic 
ow where the speed of sound cs is very large.

Another stability condition that takes into account viscous e�ects can be derived

as follows. We consider the linear advection-di�usion equation (Peyret&Taylor [38,

p.65]) which is simple to analyze, and is a special case of the momentumNavier Stokes

equations. The advection-di�usion equation has the following form,

@f

@t
+A

@f

@x
+B

@f

@y
� �r2f = 0 (3.16)

where f is the variable that is di�used; for example, the 
uid momentum. The

coe�cients A and B correspond to the 
uid speed

A = jVxj

B = jVyj

and they are assumed to be constant for the purpose of linear analysis. The explicit

discretization of equation 3.16 produces,

fn+1 = fn ��t (A�xf
n +B�yf

n � ��xxf
n � ��yyf

n) (3.17)

By applying the von Neumann stability analysis to the above (see section 3.3.3 for a

description), we get the following constraints (Peyret&Taylor [38, p.65]) in the case

of �x = �y,

�t � 2�

jVxj2 + jVyj2 (3.18)

and also,
��t

�x2
� 1

4
(3.19)

Although the above conditions are necessary, they are not su�cient. The simulation

of subsonic compressible 
ow at high Reynolds numbers is susceptible to slow-growing
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Figure 3-3: The numerical domain of dependence for �x = �y.

numerical instabilities of very high spatial frequency. These stability problems are dis-

cussed in chapter 5, and they can be avoided by including arti�cial viscosity (fourth-

order numerical dissipation) which �lters very high spatial frequencies.

3.3.2 Derivation of CFL formula

To derive the CFL stability equation 3.14, we consider a node with four neighbors

in a square grid as shown in �gure 3-3. The goal is to compare the numerical and

the physical domains of dependence. We observe that the four neighbors are the only

nodes that can in
uence the central node after one time step �t. Thus, the numerical

domain of dependence of the central node is the square area that is enclosed by straight

lines drawn between the four neighbors. The physical domain of dependence that

arises from acoustic waves is a circle of radius �s = cs�t, and it must be contained
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Figure 3-4: The numerical domain of dependence for �x 6= �y.

within the square area. Simple geometry shows that the maximum radius �s is given

by the following formula,

�s =
1

2
(
p
2�x) (3.20)

and thus we must have,

cs�t � 1

2
(
p
2�x) (3.21)

�x

�t
� cs

p
2 (3.22)

Similarly, the physical domain of dependence that arises from hydrodynamic motion

must be contained within the numerical domain. Thus, we must have,

�x

�t
� jVxj (3.23)

�x

�t
� jVyj (3.24)

A simple way to combine all of the above inequalities is to require that �x=�t is

greater than the sum of the individual positive terms. This produces the inequality
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that we wished to prove,

�x

�t
� (jVxj+ jVyj+ cs

p
2) (3.25)

The more general CFL stability equation 3.15 is derived in a similar way. We

consider the numerical domain shown in �gure 3-4 that has a rhombic shape. We

have the following geometric relations, where � is the length shown in �gure 3-4,

�s2 + �2 = �y2 (3.26)

�s2 +

�q
�x2 +�y2 � �

�2
= �x2 (3.27)

After some algebra we can obtain,

�s =

 
1

�x2
+

1

�y2

!
�1

(3.28)

The physical domain of dependence that arises from acoustic waves must be smaller

than the numerical domain. Thus, we must have,

�s � cs�t (3.29)

or equivalently,

�t�1 � cs

 
1

�x2
+

1

�y2

!
(3.30)

We must also satisfy the hydrodynamic constraints,

�t�1 � jVxj
�x

(3.31)

�t�1 � jVyj
�y

(3.32)

The above inequalities can be combined additively to produce the inequality,

�t �
 jVxj
�x

+
jVyj
�y

+ cs

s
1

�x2
+

1

�y2

!�1

(3.33)

This is the general form of the CFL condition in two dimensions for an explicit

numerical method that employs nearest neighbor interactions.
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3.3.3 Semi-implicit density

An explanation why a semi-implicit discretization of the continuity equation leads to

better stability properties than a fully explicit discretization is as follows. Let us write

the discretized Navier-Stokes equations in one-dimensional form for simplicity. We

write the mass continuity equation and the momentum conservation equation along

the x-direction as follows,

�n+1 = �n ��t

"
�n
un+1j+1 � un+1j�1

2�x
+ un+1

�nj+1 � �nj�1

2�x

#
(3.34)

un+1 = un +�t

"
��n

unj+1 � 2un + unj�1

�x2
� c2s

�nj+1 � �nj�1

�n2�x
� un

unj+1 � unj�1

2�x

#
(3.35)

Equation 3.34 is a semi-implicit discretization of the continuity equation. To compare,

an explicit discretization is as follows,

�n+1 = �n ��t

"
�n
unj+1 � unj�1

2�x
+ un

�nj+1 � �nj�1

2�x

#
(3.36)

We now apply the von-Neumann frequency analysis (Peyret&Taylor [38, p.344]). We

write the di�erent variables in terms of their frequency components, and we analyze

each frequency separately (non-linear combinations of frequencies are ignored). We

have,

�n = ei�0x

�n+1 = G0 e
i�0x

un = Aei�1x

un+1 = G1A ei�1x

(3.37)

where A is the velocity amplitude, and G0; G1 are the growth factors corresponding to

the spatial frequencies �0; �1 of the density and velocity respectively. The imaginary

unit of complex numbers is denoted by i =
p�1, and it should not be confused with

indices because i is never used as an index here. The following identities are very

useful,

�x�
n = �n i�x�1 sin(�0�x)

�xx�
n = �n 2�x�2(cos(�0�x)� 1)

(3.38)
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Below, the following dimensionless constants are used for brevity,

�1 = (�t=�x)A

�2 = (��t=�x2)

�3 = (�t=�x)(c2s=A)

(3.39)

If we substitute the exponentials of equation 3.37 into equation 3.34 and 3.35, we

obtain the following equations,

G0 = 1 � iG1�1 e
i�1x(sin�0�x+ sin�1�x) (3.40)

G1 = 1 + 2�2(cos�1�x� 1) � i �3 e
�i�1x sin�0�x� i �1 e

i�1x sin �1�x (3.41)

By contrast, the explicit discretization of the continuity equation produces the fol-

lowing,

G0 = 1 � i �1 e
i�1x(sin�0�x+ sin�1�x) (3.42)

A necessary condition for stability is that the magnitude of each growth factor indi-

vidually G0; G1 should not be larger than unity for all possible frequencies �0; �1. The

largest frequency that is possible on a grid of spacing �x corresponds to a wavelength

of 2�x (2 nodes per cycle),

0 � �0; �1 � �

�x
(3.43)

Di�erent choices of �0; �1 within the above range can be substituted in equations 3.40,

3.41, and 3.42, 3.41 to derive stability conditions. The algebra is rather complicated,

and is omitted here. Instead, we notice that the G0 factor of the semi-implicit version

(equation 3.40) is almost identical to the G0 factor of the explicit version (equa-

tion 3.42) except for the extra G1. In the explicit version, the magnitude of G0 is

always greater than unity, but in the semi-implicit version the magnitude of G0 can

be less than unity because of the extra G1. A complete analysis requires carrying out

the complex multiplications, collecting terms, considering the variation of ei�1x in

space, etc. The above preliminary analysis gives a basic idea of why the semi-implicit

version can be expected to be more stable than the explicit version, a fact which can

be easily observed experimentally.
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3.3.4 Boundary conditions

The modeling of boundaries is a very important part of a numerical method. The

boundaries include the internal obstacles and the perimeter that encloses the simu-

lated region (it should be noted that periodic boundaries are not useful in the case of


ue pipes). Near a boundary, the numerical method must take into account the fact

that grid points are available only on the interior side of the boundary. For instance,

the symmetric di�erences which are used at the interior nodes (equation 3.8) must

be replaced with asymmetric di�erences at the boundary nodes. Furthermore, the

numerical boundary conditions must be chosen properly to model the desired physical

conditions such as a non-slip wall, an inlet, and an outlet.

A non-slip wall means that the velocity variables Vx; Vy are always equal to zero;

therefore, only the density needs to be calculated at a non-slip wall. The approach

which is used in the simulations of 
ue pipes, is to compute the density � by applying

asymmetric �nite di�erences to the continuity equation. In particular, the central

di�erences of equation 3.8 are replaced with asymmetric di�erences denoted by �x�

and �x+ as follows,

@�

@x
! �x�� =

3�j;k � 4�j�1;k + �j�2;k

2�x
(3.44)

@�

@x
! �x+� =

�3�j;k + 4�j+1;k � �j+2;k

2�x
(3.45)

and similarly for the y-directions.

An alternative approach, which is not used in the simulations of 
ue pipes, is to

compute the density at a non-slip wall by simple extrapolation in a normal direction

to the boundary wall. Preliminary experiments which I have performed, indicate

that in the case of non-slip walls, the continuity equation with asymmetric di�erences

works better than extrapolating the density. However, the extrapolation approach is

described here for completeness. Extrapolation amounts to setting

�(xB) = �(xB ��x) (3.46)



CHAPTER 3. NUMERICAL METHODS FOR FLUID FLOW 110

where xB is the boundary wall. The justi�cation for the extrapolation condition

comes from considering the momentum Navier Stokes equation at the wall,

@u

@t
+ u

@u

@x
+ v

@v

@y
+ c2s

@�

�@x
� �r2u = 0 (3.47)

Since u = v = 0, most of the above terms vanish, and we obtain,

c2s
@�

�@x
� �

@2u

@x2
= 0 (3.48)

The speed of sound cs is very large compared to the 
ow speed u. Thus, it makes sense

to approximate the above with the condition @�=@x = 0 which gives the extrapolation

condition for the density at a non-slip wall.

There are also other approaches for calculating the density at the boundary (more

sophisticated than the above), and some of them are described in Poinsot&Lele [39].

After some algebra, it is possible to show that the formulas of Poinsot&Lele [39] in

the case of a non-slip wall are equivalent to applying asymmetric di�erences to the

continuity equation with the addition of some correction terms which are proportional

to the Mach number; hence, they are small in the case of subsonic 
ow. Because the

correction terms introduce complexity and additional �nite di�erencing, I do not use

them in the simulations of 
ue pipes.

Boundary conditions for modeling an inlet and an outlet are discussed later in

section 7.3. Below, a �nite di�erence method for simulating incompressible 
ow is

described.

3.4 Incompressible �nite di�erence method

The incompressible �nite di�erence method described here, is employed for numerical

testing purposes only. In particular, in sections 4.4 and 4.5 the numerical accuracy

of the lattice Boltzmann method is tested on 
uid 
ows that have exact analytic

solutions. These exact solutions assume a perfectly incompressible 
ow, and they

ignore acoustic waves. To compare the lattice Boltzmann method with methods
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speci�cally designed for perfectly incompressible 
ows, the following incompressible

�nite di�erence method is used. The continuity equation 2.52 is replaced with the

divergence-free condition for the velocity �eld,

@Vx

@x
+
@Vy

@y
+
@Vz

@z
= 0 (3.49)

The momentum equations remain as before, namely,

@Vx

@t
+ Vx

@Vx

@x
+ Vy

@Vx

@y
+ Vz

@Vx

@z
+
@P

@x
� �r2Vx = 0 (3.50)

@Vy

@t
+ Vx

@Vy

@x
+ Vy

@Vy

@y
+ Vz

@Vy

@z
+
@P

@y
� �r2Vy = 0 (3.51)

To advance the solution, the momentumequations are discretized explicitly; while the

pressure term is omitted when calculating the �rst estimate of the velocity. Then,

the velocity estimate is corrected in order to satisfy incompressibility by solving a

Poisson equation,

r2� =
@V �

j

@xj
(3.52)

where V �

j is the �rst estimate of the velocity, and the Einstein summation is implied.

The above Poisson equation computes the part of the velocity �eld that has non-zero

divergence, which is then subtracted from the initial velocity estimate to obtain a

divergent-free velocity as follows,

Vi(t+�t) = V �

i �
@�

@xi
(3.53)

The correction of the velocity can also be view as a projection of the initial velocity

�eld onto the space of divergent-free velocity �elds. Accordingly, this method is called

a projection method. The projection takes into account the pressure e�ects that were

omitted in the �rst estimate of the velocity (Peyret&Taylor [38, p.160]). In addition,

the solution of the Poisson equation provides an estimate of the pressure at the current

time-step as follows,

P =
1

�t
� (3.54)
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In the numerical tests of sections 4.4 and 4.5, the Poisson equation is solved with

Successive-Over-Relaxation (SOR) [40, page 680] using an orthogonal non-staggered

grid. Also, forward-Euler is used to estimate the time derivative, and centered di�er-

ences (3-point symmetric) are used to calculate the spatial derivatives.

In the next chapter, the lattice Boltzmann method for simulating subsonic com-

pressible 
ow is presented.



Chapter 4

The lattice Boltzmann method

The lattice Boltzmann (LB) method is a numerical scheme for simulating viscous

compressible 
ow in the subsonic regime (Koelman [29], Qian [41], Chen [10]). In

this chapter, the LB method is analyzed, and two major results are presented: the

development of a new technique for accurate boundary and initial conditions for the

LB method, and the demonstration that the LB method is second-order accurate in

space and in time.

In the next section, the basic LB algorithm is reviewed, and the hexagonal 7-speed

LB model is described. The 7-speed model has the smallest number of populations

Fi that are necessary to give correct Navier Stokes in two dimensions. Because of

its simplicity, the 7-speed model is used in all the theoretical discussions here. In

section 4.2, techniques for accurate boundary and initial conditions for the LB method

are analyzed. In section 4.3, the 9-speed LB model for 2D orthogonal grids, and also

the 15-speed LB model for 3D orthogonal grids are described.

In sections 4.4 and 4.5, the numerical accuracy of the LB method is tested ex-

perimentally on initial and on boundary value problems. The LB method is shown

to be second-order accurate in space and in time. Also, the LB method is compared

against an explicit �nite di�erence method for incompressible 
ow. In section 4.6.1,

the modeling of non-slip wall and the calculation of density at a non-slip wall are dis-

113
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cussed. In section 4.6.2, an approach for developing composite grids (grids of di�erent

resolution joined together) for the LB method is outlined.

There is also an appendix where the numerical roundo� error of the LB method

is analyzed (section 4.7.1), and the relationship between lattice gas and lattice Boltz-

mann is discussed (section 4.7.2).

F2
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6 7 8

F1

F3

Figure 4-1: The 8 moving populations of the orthogonal lattice Boltzmann method.
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65
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Figure 4-2: The 6 moving populations of the hexagonal lattice Boltzmann method.
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4.1 Basics of lattice Boltzmann

The ideas behind the lattice Boltzmann approach (and lattice gas of section 4.7.2)

come from the kinetic theory of gases. According to kinetic theory, the dynamics of


ows at length scales comparable to the mean free path are described by a Boltzmann

equation,
@f

@t
+ ~v � ~rf = (�1=� )(f � f eq) (4.1)

where f(~x;~v; t) represents the density of particles inside an in�nitesimal volume (~x; ~x+

d~x) with velocity (~v;~v+d~v) at time t. The left-hand side of equation 4.1 represents the

advection of particles with velocity ~v, and the right-hand side represents the collision

between particles. The collision operator of equation 4.1 is known as the BGK [4]

relaxation with time constant � towards local equilibrium f eq (typically, a Maxwell-

Boltzmann equilibrium). 1 Starting from the Boltzmann equation 4.1 which describes


ow at microscopic scales, it is possible to derive the Navier Stokes equations which

describe 
ow at macroscopic scales (at least 100 times the mean free path). Such a

derivation requires a suitable averaging of the Boltzmann equation over all possible

velocities, and also a Chapman-Enskog expansion (see section 4.1.2).

The lattice Boltzmann method takes the structure of the Boltzmann equation 4.1

and the ideas of kinetic theory, and applies them to macroscopic length scales using a

discrete set of velocities instead of a continuous set of velocities ~v. Despite the coars-

ening of length scale and the discrete set of velocities, the lattice Boltzmann method

manages to produce the Navier Stokes equations in a similar way that kinetic theory

does. The key ingredients that make the kinetic approach work, are the advection

of particles and the collision of particles (relaxation) conserving mass, momentum,

and energy. An additional feature is that the discrete set of velocities requires a

highly-symmetric lattice (grid) on which the particles can move [20, 15, 58].

In two dimensions, typical lattices are the hexagonal and the orthogonal lattices

1More complex collision operators can be used also to describe 2-pair, 3-pair, etc interactions

between particles (this leads to the BBGKY hierarchy of equations [27, p.65]).
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shown in �gures 4-1 and 4-2. In the lattice Boltzmann method, each node of the

lattice is associated with a set of moving particles or populations Fi. The 
uid

variables �; Vx; Vy can be obtained from the Fi via a simple summation at each 
uid

node,

� =
P
Fi

� ~V =
P
Fi ~ei

(4.2)

where ~ei are the discrete velocities of the lattice; for example, on a hexagonal lattice,

~ei =
�x

�t

 
cos

2�(i� 1)

6
; sin

2�(i� 1)

6

!
(4.3)

where �x is the lattice spacing (distance between neighboring nodes) and �t is the

integration time step. Each node in a hexagonal lattice has 6 nearest neighbors,

and the simplest lattice Boltzmann method has 6 moving populations at each node.

These populations are shifted (advected) from one lattice site to another, and are

relaxed towards local equilibrium by means of a collision operator which conserves

mass, momentum, and energy just like a particle collision. The evolution equation is

as follows,

Fi(~x+ ~ei�t; t+�t) = Fi(~x; t) + Ci (4.4)

where Ci is the collision operator, and the left-hand side is the advection of pop-

ulations in discrete space and discrete time. Each evolution cycle consists of one

advection and one relaxation, and corresponds to one integration time step �t of the

LB method.

There are a number of ways of implementing a suitable collision operator. One ap-

proach is to multiply the vector of the old populations Fi by a suitable collision matrix

in order to produce the vector of the new populations (Gunstensen&Rothman91 [22],

Vergassola [55], Higuera [25]). A simpler approach is to apply a relaxation to each

population Fi with a time constant � (the BGK operator of equation 4.1),

(relaxed Fi) = Fi � (Fi � Fi
eq)

�
(4.5)
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The evolution equation becomes as follows,

Fi(~x+ ~ei�t; t+�t) = Fi(~x; t) � (Fi � Fi
eq)

�
(4.6)

The BGK relaxation is the simplest collision operator that can produce Navier Stokes

in the subsonic limit (the ratio of the 
ow speed divided by the speed of sound must

be small). To conserve mass and momentum, the equilibrium populations Fi
eq must

be chosen so that P
Fi

eq =
P
FiP

Fi
eq ~ei =

P
Fi ~ei

(4.7)

A few additional requirements on the equilibrium populations Fi
eq are described in

the next section. These additional requirements together with mass and momentum

conservation are su�cient to make the lattice Boltzmann method approximate the

Navier Stokes equations.

It should be noted that the mapping from the populations Fi to the 
uid vari-

ables �; Vx; Vy is simple (equation 4.2). However, the inverse mapping from the 
uid

variables �; Vx; Vy to the populations Fi is not as simple. The inverse mapping is

not needed for the basic LB algorithm, but is useful for implementing initial and

boundary conditions as explained in section 4.2.

4.1.1 Hexagonal 7-speed model (d2q7)

The hexagonal 7-speed lattice Boltzmann method is described in detail here. It

is denoted \d2q7" following the naming convention of Qian [41]. We consider a

hexagonal lattice (see �gure 4-2) with six moving populations denoted by Fi i =

1; : : : ; 6 and one rest-particle population denoted by F0. The non-moving population

F0 stays �xed at each node and undergoes only relaxation (collision) at every step.

At startup, the populations Fi are initialized from the 
uid variables �; Vx; Vy (see

section 4.2). After initialization, successive steps of relaxation and advection are

performed to calculate the Fi and the 
uid variables �; Vx; Vy at later times. The
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relaxation and advection steps are described by the following formulas,

Fi(~x+ ~ei�t; t+�t) = Fi(~x; t) + (�1=� ) [Fi(~x; t)� Fi
eq(~x; t)]

F0(~x; t+�t) = F0(~x; t) + (�1=� ) [F0(~x; t)� F0
eq(~x; t)]

i = 1; : : : ; 6

(4.8)

� =
1

2
+
4�t �

�x2
:

The relaxation parameter � is chosen to achieve the desired kinematic viscosity �

given the space and time discretization parameters �x;�t. The vector ~ei stands for

the six velocity directions of the hexagonal lattice,

~ei =
�x

�t

 
cos

2�(i� 1)

6
; sin

2�(i� 1)

6

!
(4.9)

The velocity ~V (~x; t) and density �(~x; t) are computed from the populations Fi(~x; t)

using the relations,

�(~x; t) =
P6

i=0 Fi(~x; t)

�(~x; t) ~V (~x; t) =
P6

i=1 Fi(~x; t)~ei
(4.10)

The variations of density around its mean value (spatial mean which is constant in

time) provide an estimate of the 
uid pressure P (~x; t), according to the following

equation,

P (~x; t) = c2s (�(~x; t)� <�> ) (4.11)

The speed of sound is,

cs =
p
3w0 (�x=�t) (4.12)

where the coe�cient w0 is discussed below. The equilibrium populations Fi
eq(x; t)

are given by the following equations,

Fi
eq(~x; t) = �(~x; t)

h
w0 + w1(~ei � ~V ) + w20(~ei � ~V )(~ei � ~V ) + w21(~V � ~V )

i
F0

eq(~x; t) = �(~x; t)
h
z0 + z21(~V � ~V )

i
6w0 + z0 = 1 ;

w1 = 1=(3 c2) ; w20 = 2=(3 c4) ; w21 = �1=(6 c2)
z21 = �1=c2 ; c = �x=�t

(4.13)



CHAPTER 4. THE LATTICE BOLTZMANN METHOD 119

The above coe�cients are chosen so that the Chapman-Enskog expansion of the evo-

lution equation 4.8 matches the Navier Stokes equations (section 4.1.2). In particular,

the coe�cient w1 is determined from momentum conservation, the coe�cient w20 is

determined from Galilean invariance (ie. the advection term (Vx @Vx=@x+Vy @Vx=@y)

must appear in the Chapman-Enskog expansion with a constant factor equal to one),

the coe�cient w21 is chosen to eliminate the (~V � ~V ) dependence of the pressure, and
the coe�cient z21 is chosen to eliminate the (~V � ~V ) term in the mass conservation

equation. There is some freedom in choosing the remaining coe�cients w0 and z0,

but they must satisfy 6w0 + z0 = 1 to conserve mass, and they must be positive for

stability purposes. A simple choice is w0 = z0 = (1=7).

The computational cycle of the lattice Boltzmann method is organized as follows:

The current lattice populations Fi(~x; t) are used to calculate the velocity �eld ~V (~x; t)

and density �eld �(~x; t) according to equation 4.10. These �elds are the numerical

solution at time t, and they are also used to compute the equilibrium populations

Fi
eq(~x; t) which are needed to advance the solution. The equilibrium populations

Fi
eq(~x; t) are used to relax the Fi(~x; t) into \relaxed" populations which are then

advected according to equation 4.8 to produce the lattice populations at the next

time step. Then the cycle repeats.

4.1.2 Chapman-Enskog expansion

The Chapman-Enskog expansion is outlined here. The goal of the Chapman-Enskog

expansion is to derive a set of partial di�erential equations in terms of � and �~V that

describe the behavior of the lattice Boltzmann 
uid in the limit of �x;�t going to

zero. During the Chapman-Enskog expansion, it is assumed that the ratio �x=�t = c

is constant, and that the ratio (V=c) is small where V is the macroscopic speed of

the 
uid. The �nal result of the Chapman-Enskog expansion is the mass continuity

equation and the Navier Stokes momentum equations.

The �rst step is to Taylor-expand the population variable Fi(~x+ ~ei�t; t+�t) in
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the evolution equation 4.8 around the point (~x; t). This produces an equation whose

left-hand side is a Taylor series and whose right-hand side is equal to (�1=� )(Fi�Fi
eq).

This equation has the following form,

�t

 
@

@t
+ ~ei � r

!
Fi +

�t2

2

 
@

@t
+ ~ei � r

!2
Fi + : : : =

(Fi � Fi
eq)

�� (4.14)

The second step is to combine the Taylor series equation 4.14 with the mass and

momentum conservation relations (equation 4.10). This produces three equations

whose left-hand sides are Taylor series and the right-hand sides vanish because the

equilibrium populations Fi
eq are chosen to satisfy mass and momentum conservation

(for example
P6

0 Fi =
P6

0 Fi
eq). The three Taylor series that are derived in this way

contain partial derivatives of quantities that are sums and tensors of the populations

Fi. The equations have the following form to �rst order,

@(
6X
0

Fi)=@t + ~r � (
6X
1

~eiFi) + : : : = 0 (4.15)

@(
6X
1

~eiFi)=@t + ~r � (
6X
1

~ei~eiFi) + : : : = 0 (4.16)

If the mass equation is truncated to �rst-order terms in the derivatives, the resulting

equation contains only sums of Fi and no tensors. The sums of Fi can be converted

easily to � and �~V , and this produces the mass continuity equation. The momentum

equation must be truncated to second-order terms in the derivatives to produce the

Navier Stokes equations. This is necessary because second-order spatial derivatives

contribute to the viscosity of the 
uid.

A complication arises with the pressure tensor (
P
~ei~eiFi) which appears in the

momentum equation 4.16. The pressure tensor can not be expressed in terms of �

and �~V without introducing an approximation of the Fi in terms of � and �~V . This

approximation is necessary in the mass equation also if we include high-order terms

in the mass equation.

The Chapman-Enskog expansion approximates the populations Fi(~x; t) with the

equilibrium populations Fi
eq(~x; t) to zero order. Then, a correction is added to �rst
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order,

Fi(~x; t) = Fi
eq(~x; t) + Fi

(1)(~x; t) (4.17)

and so on. The approximation of the Fi can be viewed as another series expansion

that is used in parallel with the Taylor series expansion. To retrieve the Navier Stokes

equations, it is su�cient to calculate up to �rst order Fi
eq+Fi

(1) while keeping up to

second-order terms in the Taylor series, as stated previously, in order to retrieve all

the viscosity terms.

The correction term Fi
(1) is computed from Fi

eq using the evolution equation 4.8

Taylor-expanded to �rst-order with the Fi replaced by the zero-order estimate Fi
eq

as follows,

Fi
(1) = �� �t

"
@Fi

eq

@t
+ ~ei � ~rFi

eq

#
(4.18)

The accuracy of the Fi approximation improves as (V=c) becomes smaller. The above

Fi
(1) can be used to replace Fi with Fi

eq + Fi
(1) in the momentum equation 4.16.

Further, we express the Fi
eq in terms of � and �~V in order to derive two partial

di�erential equations in terms of � and �~V corresponding to momentum conservation.

By choosing the formulas of the equilibrium populations Fi
eq appropriately, we can

make the momentum equations match the Navier Stokes equations. For example, the

equilibrium populations of equation 4.13 produce the following x-momentumequation

(to second-order terms),

@(�Vx)

@t
+
@(�VxVx)

@x
+
@(�VxVy)

@y
= �@(3c

2w0�)

@x
+ �r2(�Vx) + �

@(~r � (�~V ))
@x

(4.19)

� =
c2�t

8
(2� � 1) � = 2 z0 �

The above viscosity terms di�er slightly from the form presented in section 2.4, where

the density appears outside the spatial derivatives, for example,

� �r2Vx and ��
@(~r � ~V )

@x
(4.20)

This is not an issue in subsonic 
ow because the terms �Vxr2� (high-order derivatives

of density �) are very small compared to the other terms.
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4.1.3 Stability and accuracy

Formulas that describe the numerical error of the LB method can be obtained in

principle by continuing the Chapman-Enskog expansion outlined above. In particu-

lar, most of the terms that di�er from the Navier Stokes equations in the Fi
eq+Fi

(1)

expansion are multiplied by �x2 or �t2, which suggests second-order accuracy. How-

ever, the terms from the next-order correction Fi
(2) must also be considered. More-

over, one must also investigate whether the truncated Chapman-Enskog expansion

is adequate to estimate the leading-order error term. This fact is not obvious be-

cause the Chapman-Enskog expansion is not simply a Taylor series expansion, but a

\double" expansion that involves both a Taylor series and another functional series

expansion described above. A detailed analysis has not been performed yet.

Leaving aside the theoretical di�culties, experimental evidence presented in sec-

tions 4.4 and 4.5, shows that the LB method is second-order accurate in space and

in time. In the future, it would be very interesting to calculate theoretically the con-

stants of the leading-order error terms for the di�erent LB models (the d2q7 above,

and the d2q9 and d2q15 described later), and to test whether the theoretical error

constants agree with the experimental results.

Stability conditions for the LB method are not known in general. A few necessary

conditions are as follows. First, a CFL condition for explicit methods requires that

the ratio of the 
ow speed divided by the numerical speed V=(�x=�t) should be less

than one. 2 In addition, a subsonic 
ow condition must be satis�ed that the ratio

of the 
ow speed divided by the speed of sound V=cs should be less than one. It

should be noted that the CFL condition applies generally to all explicit methods (see

section 3.3.1), but the subsonic 
ow condition is an additional requirement of the

present lattice Boltzmann approach.

2The CFL condition also requires that the ratio of the sound speed divided by the numerical

speed cs=(�x=�t) should be less than one. This is always true in the case of lattice Boltzmann

because cs =
p
3w0(�x=�t) and because of the constrains on the density coe�cients w0; z0 (for

example, see equation 4.22).
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Another stability condition is that the density coe�cients w0; z0; y0 of the equilib-

rium population formulas must be positive. 3 This fact can be proven by considering

the norm of the vector of populations Fi, and by requiring that the norm does not

grow after the relaxation (collision operator) is applied. However, the algebra is

rather complicated and is omitted here. It is very easy to verify experimentally that

non-positive density coe�cients w0; z0; y0 lead to instabilities.

The requirement for positivity of the density coe�cientsw0; z0; y0 can be combined

with other formulas to deduce further conditions. For example, in the case of the 9-

speed d2q9 model, the mass conservation formula is

4w0 + 4y0 + z0 = 1 (4.21)

Using y0 = w0=4 gives,

w0 � 1

5
(4.22)

as an upper bound on the coe�cient w0. Actually, a more stringent bound can be

obtained by considering the formula for the bulk viscosity,

� = 2�(1 � 3w0 � 6y0) (4.23)

The second law of thermodynamics applied to the dissipation of energy during the

compression of 
uid elements (Landau&Lifshitz [32, p.45]) requires that

� � �

3
(4.24)

which gives

w0 + 2y0 � 5

18
(4.25)

or using the choice y0 = w0=4,

w0 � 5

27
(4.26)

The above formulas are necessary conditions for the stability of the lattice Boltzmann

method.

3The density coe�cient y0 is used in the orthogonal d2q9 model of section 4.3. The density

coe�cient y0 of the d2q9 model should be preferably chosen y0 = w0=4 following the ratio of the

other coe�cients such as y1 = w1=4.
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4.2 Initial and boundary conditions

Having reviewed the basic theory of the LB method, it is now appropriate to discuss

how to implement accurate initial and boundary conditions for the LB method. The

basic idea is to �nd a good way of calculating the populations Fi from the 
uid

variables �; Vx; Vy.

My approach is to combine the standard collision operator of the lattice Boltzmann

method with a new extended collision operator. This combination is referred to as the

hybrid method, and is described below. An alternative approach is to truncate the

Chapman-Enskog expansion. In theory, the in�nite series of the Chapman-Enskog

expansion produces exactly the inverse mapping; however, in practice the Chapman-

Enskog expansion must be truncated. Furthermore, the obvious truncation of the

Chapman-Enskog expansion does not perform very well (numerical tests of the zero-

th and the �rst-order truncated series are given in section 4.4). However, if the �rst-

order truncated series is modi�ed appropriately, it produces an expression which is

identical to the hybrid method. This equivalence of the hybrid method and a modi�ed

Chapman-Enskog expansion was �rst noticed by Dominique d'Humi�eres who kindly

communicated this result to the author.

4.2.1 Previous approaches and related work

Before presenting the hybrid method and the extended collision operator, it is useful to

review how initial and boundary conditions for the LB method have been traditionally

implemented.

Traditionally, the use of an accurate inverse mapping for the lattice Boltzmann

populations has been avoided both for initial value and for boundary value problems.

In the case of initial value problems, when the 
uid density and velocity �; Vx; Vy

are speci�ed at time zero and the goal is to calculate �; Vx; Vy at later times, the

populations Fi can be initialized equal to the equilibrium values Fi
eq which are known
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in terms of �; Vx; Vy. The error that results from this approximation can be overcome

by discarding the �rst few steps and measuring the parameters of the 
ow afterwards

(recalibrating the solution). This is often done in the literature without further

discussion. The problem with recalibration is that a slightly di�erent problem is

solved than the original �; Vx; Vy. By contrast, traditional methods such as �nite

di�erences do not need any recalibration. Thus, to put the lattice Boltzmann method

on equal footing with other methods (for numerical testing in particular) it is desirable

to have an accurate means of calculating the populations Fi from the initial values of

�; Vx; Vy.

In the case of boundary conditions, there are techniques that avoid the inverse

mapping as in the case of initial conditions. In particular, the velocity of the 
uid can

be forced to zero at non-slip wall boundaries by imposing a non-slip bounce-back of

the populations Fi. However, the location of the wall is not always well de�ned (see

Cornubert&et al. [12], Ginzbourg&Adler [21] for a discussion of the actual location

of the wall as a function of the simulation parameters for some simple 
ows). In the

case of boundary conditions with non-zero velocity, such as the driven cavity problem

Peyret&Taylor [38, p.199], the velocity at the boundary can be controlled by inserting

momentum (forcing) in every step as is done in lattice gas automata. This type of

forcing is somewhat ad-hoc however, and is often inaccurate, and requires recalibra-

tion of the simulation parameters. In the case of an arbitrary velocity speci�cation

at the boundary, such as the 
uid 
ows of section 4.5, the forcing techniques and the

recalibration become very di�cult. Thus, it is desirable to have an accurate means of

calculating the populations Fi at a boundary node from the 
uid variables �; Vx; Vy

that are speci�ed at this node.

4.2.2 Hybrid method and extended collision operator

The calculation of the populations Fi from 
uid variables �; Vx; Vy is now described.

For this purpose, an extended collision operator is introduced (denoted d2q7X) which
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di�ers from the standard collision operator in the equilibrium population formulas.

The evolution equation remains as before, and can be written as follows,

Fi(~x+ ~ei�t; t+�t) = Fi(~x; t) +
Fi(~x; t)� Fi

�eq(~x; t)

�� � (4.27)

The relaxation parameter of the extended collision operator is denoted � � to dis-

tinguish it from the relaxation parameter � of the standard collision operator (and

accordingly for other parameters shown below).

The important idea is that the equilibrium population formulas Fi
�eq of the extended

collision operator include additional terms (shown below) so that the viscosity can be

controlled independently from the relaxation parameter � �. Thus, � � can be set equal

to one, which implies that the Fi are replaced by the Fi
�eq at each step. In other words,

the old Fi are not needed anymore, and the Fi
�eq provide a direct mapping from the


ow variables �; Vx; Vy to the new populations Fi.

The extended collision operator is used everywhere (all the 
uid nodes) at startup,

but only at the boundary nodes during the simulation. After the �rst step, the stan-

dard collision operator is used at the inner (non-boundary) nodes. This combination

of the two operators is referred to as the hybrid method here (denoted d2q7H in the

case of the hexagonal model). It is valid to combine two di�erent collision operators

as long as the two operators have the same transport coe�cients (shear and bulk

viscosity) which is true here.

The equilibrium population formulas Fi
�eq of the extended collision operator in-

clude terms which are based on the gradients of the 
uid velocity, and are motivated

by equation 2.5.1 of Wolfram [58]. The equilibrium population formulas Fi
�eq are as

follows,

Fi
�eq(~x; t) = �(~x; t)

h
w0 + w1(~ei � ~V ) + w20(~ei � ~V )(~ei � ~V ) + w21(~V � ~V )

i
+

w31 (~ei � ~r(~ei � �~V )) + w32 (~r � �~V ) ;

i = 1; : : : ; 6

F0
�eq(~x; t) = �(~x; t)

h
z0 + z21(~V � ~V )

i
+ z32 (~r � �~V )

(4.28)
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3 c2w31 + 6w32 + z32 = 0

The velocity gradients in the above equation (the terms with coe�cients w31; w32; z32)

are computed using �nite di�erences unless they are known by other means; for

example some of the velocity gradients may be known at the boundary nodes (see

section 4.5). The coe�cients w0; w1; w20; w21; z0; z21 have the same values as in the

standard collision operator d2q7 (equation 4.13). It is worth noting that the velocity

gradient terms of equation 4.28 can be viewed as a correction to the equilibrium

population formulas,

Fi
�eq = Fi

eq + Fi
(1X) (4.29)

where

Fi
(1X) = w31 (~ei � ~r(~ei � �~V )) + w32 (~r � �~V ) (4.30)

The above formula is used in the next section to relate the extended collision operator

to a truncated Chapman-Enskog expansion.

Using the Chapman-Enskog expansion, the shear and bulk viscosities of the ex-

tended collision operator can be calculated,

�� =
c2�t

8
(2� � � 1) � 3 c4 w31

4
(4.31)

�� =
c2�t

4
(2� � � 1) z0 � 3 c4w31

2
� 3 c2 w32

When � � is set equal to one, the coe�cient w31 is chosen to achieve the desired shear

viscosity given the discretization parameters �x;�t. The coe�cient w32 is chosen

to achieve the desired bulk viscosity, and the coe�cient z32 is chosen to enforce the

relation (3 c2 w31 + 6w32 + z32) = 0 which corresponds to mass conservation.

In the case of the hybrid method (when the standard and extended collision oper-

ators are used in the same computation), the bulk viscosity of equation 4.31 is chosen

equal to the bulk viscosity of the standard collision operator given by equation 4.19

(similarly for the shear viscosity). Also, the relaxation parameter � � is set equal to
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1:0. In this case, the coe�cients w31; w32; z32 simplify as follows,

w31 =
(1� � )�t

3c2
(4.32)

w32 = �w0(1 � � )�t

z32 = �z0(1 � � )�t

It should be noted that the extended collision operator is accurate when used for

initial and boundary conditions, but it is not accurate when iterated many times. It

appears that the �nite di�erences which are used by the extended collision operator

produce an error in viscosity which means that the computed solution decays at a

slightly di�erent rate than desired. The error accumulates with successive iterations,

and the method does not approximate the solution as �t goes to zero (see �gure 4-6

in section 4.4.2). However, this is not a problem in practice because the extended

collision operator is only used at startup and subsequently only at the boundary

nodes.

Finally, another issue worth mentioning is the initialization of the density at

startup. Quite often, the pressure P (x; y) is speci�ed at startup. Then, the den-

sity �(x; y) must be computed from the pressure,

�(x; y) = <�> + (
1

c2s
)P (x; y) (4.33)

where cs is the speed of sound, <�> is the constant average density, and P is the

pressure (with the constant average pressure subtracted so that <P > = 0). It is

very important not to initialize the density to be constant. The density must follow

the initial pressure gradients according to equation 4.33; otherwise large density waves

and error transients may result. Once the density and velocity �; Vx; Vy are speci�ed

correctly, the populations Fi can be calculated from �; Vx; Vy using the extended

collision operator described above.
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4.2.3 Truncated Chapman-Enskog expansion

An alternative way of deriving the hybrid method is to employ a truncated Chapman-

Enskog expansion and to perform additional manipulations. Below, the zero-order

and �rst-order truncated Chapman-Enskog expansions are described, and then it is

shown how to modify and simplify the �rst-order expansion in order to obtain the

hybrid method.

The zero-order expansion, denoted by d2q7F0, approximates the populations Fi

with the equilibrium value Fi
eq. As stated earlier, this approximation is used very

often in the literature, and it is accompanied by recalibration of the solution after the

�rst few steps are discarded (initial transients). The zero-order expansion is tested

experimentally in section 4.4; however, recalibration is not performed there because

the goal is to compare the accuracy of calculating the populations Fi from the 
uid

variables �; Vx; Vy.

The �rst-order expansion, denoted by d2q7F1, approximates the populations Fi

with the Chapman-Enskog expansion truncated to �rst-order,

Fi = Fi
eq + Fi

(1)

Fi
(1) = �� �t

"
@Fi

eq

@t
+ ~ei � ~rFi

eq

#
(4.34)

A di�erentiation of the equilibrium population formulas (equation 4.13) provides for-

mulas for the derivatives of Fi
eq in terms of the derivatives of the 
uid variables

�; Vx; Vy. The derivatives of �; Vx; Vy are known in some cases (for example in exactly

solvable 
uid 
ow problems), but in general the derivatives must be estimated us-

ing �nite di�erences. The initialization tests of section 4.4 employ �nite di�erences.

In particular, the time derivatives of �; Vx; Vy are estimated using the Navier Stokes

momentum and continuity equations, and the spatial derivatives of �; Vx; Vy are es-

timated using spatial �nite di�erences. I have also tested the di�erent initialization

methods using the exact values of the derivatives, and the results are qualitatively

the same as those reported in section 4.4.
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In section 4.4, it is shown that both d2q7F0 and d2q7F1 produce signi�cant errors

in initialization. It is a little surprising that the �rst-order Chapman-Enskog correc-

tion does not perform well, but there is an easy explanation. We observe that the

correction term Fi
(1) of equation 4.34 does not conserve momentum. This means that

the velocity �eld that results from equation 4.34 is di�erent from the original velocity

�eld. The conservation relations that correspond to equation 4.34 are as follows,

X
i

Fi
(1) = (~r � �~V ) + @�

@t

X
i

Fi
(1)eix =

@(�Vx)

@t
+ c2s

@�

@x
+
@(�VxVx)

@x
+
@(�VxVy)

@y
(4.35)

and a similar equation for
P

i Fi
(1)eiy. Therefore, mass is conserved via the macro-

scopic continuity equation, but momentum is not conserved. On the other hand, the

above equations suggest an easy way to �x the problem: We simply add a viscosity

Laplacian term so that momentum will be conserved via the Navier Stokes momen-

tum equation. The new (modi�ed) Chapman-Enskog correction term, denoted by

Fi
(1M), is as follows 4,

Fi
(1M) = �� �t

"
@Fi

eq

@t
+ ~ei � ~rFi

eq + (��=(3c2))r2(~ei � ~V )
#

(4.36)

In the numerical tests of section 4.4, the above equation is referred to as d2q7F1M.

The numerical tests show that d2q7F1M is very accurate for initialization purposes.

In practice however, the d2q7F1M method is rather cumbersome to apply because

it requires the calculation of many derivatives, including a time derivative and a

Laplacian term.

Fortunately, equation 4.36 can be simpli�ed greatly by neglecting second-order

terms in the Mach number. This means that only terms up to �rst order in (V=c)

are kept in the Chapman-Enskog expansion, and terms proportional to (V=c)2 are

4The addition of a viscosity Laplacian term to the �rst-order Chapman-Enskog expansion (for the

purpose of conserving momentum) does not change the derivation of the Navier Stokes equations via

the Chapman-Enskog procedure because the corresponding corrections are higher-order derivatives

than the Navier Stokes equations.
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discarded because they are small. In addition, the time derivatives are replaced by

space derivatives using the macroscopic mass and momentum equations. Examples

of this kind of expansion can be found in Frisch [20] and d'Humi�eres [15]. Thus,

equation 4.36 simpli�es to,

Fi
(1S) = �� �t

�
1

3c2
~ei � ~r(~ei � �~V )� w0(~r � �~V )

�
(4.37)

and similarly for the rest particle population,

F0
(1S) = �� �t

h
�z0(~r � �~V )

i
(4.38)

In section 4.4, it is shown that the simpli�ed equation 4.37 is as accurate as the

original equation 4.36 for initialization purposes.

The above formulas look suspiciously similar to the hybrid method that was de-

scribed in the last section. In fact, it is easy to verify that equations 4.37 and 4.38

produce identical results with the hybrid method. If equation 4.37 is used to initialize

the populations Fi as Fi = Fi
eq + Fi

(1S), and the �rst relaxation step is performed,

then the resulting populations which are advected (denoted
�

Fi) are as follows,

�

Fi= (Fi
eq + Fi

(1S)) + (�1=� )Fi
(1S) (4.39)

�

Fi= Fi
eq + (1� � )�t

�
1

3c2
(~ei � ~r(~ei � �~V ))� w0(~r � �~V )

�
(4.40)

The above populations are identical to the populations that are advected after a relax-

ation step using the extended collision operator (equation 4.29) when the simpli�ed

values of w31; w32; z32 for the hybrid method are used (equation 4.32). This shows

that the simpli�ed truncated �rst-order Chapman-Enskog expansion is equivalent to

the extended collision operator.

In the next section, LB models are described which are appropriate for orthog-

onal grids in two and in three dimensions. The results of this section are applied

straightforwardly to the orthogonal LB models.
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4.3 Lattice Boltzmann for orthogonal grids

The ideas discussed in the previous sections using the hexagonal 7-speed model can

be applied straightforwardly to other lattice Boltzmann models. Here, the orthogonal

9-speed model in two dimensions is described.

4.3.1 Two-dimensional 9-speed model (d2q9)

The orthogonal 9-speed model is abbreviated by the symbol d2q9 following the

convention of Qian [41]. An orthogonal lattice (see �gure 4-1) with nine popu-

lations at each node is used. The population F0 is non-moving, the populations

Fi
II i = 2; 4; 6; 8 move along the diagonal directions at the speed

p
2c, and the popu-

lations Fi
I i = 1; 3; 5; 7 move along the vertical and horizontal directions at the speed

c = �x=�t. The relaxation and advection steps are given by the following formulas,

Fi(~x+ ~ei�t; t+�t) = Fi(~x; t) + (�1=� ) [Fi(~x; t)� Fi
eq(~x; t)]

F0(~x; t+�t) = F0(~x; t) + (�1=� ) [F0(~x; t)� F0
eq(~x; t)]

i = 1; : : : ; 8

(4.41)

� =
1

2
+
3�t �

�x2

The relaxation parameter � is chosen to achieve the desired kinematic viscosity �

given the space and time discretization parameters �x;�t. The vector ~ei stands for

the eight velocity directions of the orthogonal (square) lattice,

~ei =
�x

�t

 
cos

2�(i� 1)

8
; sin

2�(i� 1)

8

!
: (4.42)

The velocity ~V (~x; t) and density �(~x; t) are computed from the populations Fi(~x; t)

using the relations,

�(~x; t) =
P8

i=0 Fi(~x; t)

�(~x; t) ~V (~x; t) =
P8

i=1 Fi(~x; t)~ei
(4.43)
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The variations of density around its mean value (spatial mean which is constant in

time) provide an estimate of the 
uid pressure P (~x; t), according to the following

equation,

P (~x; t) = c2s (�(~x; t)� <�> ) : (4.44)

The speed of sound is,

cs =
q
(2w0 + 4 y0) (�x=�t) (4.45)

where the coe�cients w0; y0 are discussed below. The Fi
eq(x; t) equilibrium popula-

tions are given by the following equations,

F
eq
i

II
= �

h
y0 + y1(~ei � ~V ) + y20(~ei � ~V )(~ei � ~V ) + y21(~V � ~V )

i
F
eq
i

I
= �

h
w0 + w1(~ei � ~V ) + w20(~ei � ~V )(~ei � ~V ) + w21(~V � ~V )

i
F0

eq = �
h
z0 + z21(~V � ~V )

i (4.46)

4w0 + 4 y0 + z0 = 1 ;

y1 = 1=(12 c2) ; y20 = 1=(8 c4) ; y21 = �1=(24 c2)
w1 = 1=(3 c2) ; w20 = 1=(2 c4) ; w21 = �1=(6 c2)
z21 = �2=(3 c2) ; c = �x=�t

The coe�cient y0 is chosen y0 = (1=4)w0 for simplicity. The coe�cient w0 can

be varied to adjust the speed of sound and the bulk viscosity within the stability

constraints w0 > 0 and z0 > 0. The shear and bulk viscosity of the d2q9 collision

operator have the following values (calculated using the Chapman-Enskog procedure),

� =
c2�t

6
(2� � 1) (4.47)

� =
c2�t

3
(2� � 1) (1 � 3w0 � 6 y0)

The extended collision operator for the orthogonal 9-speed model (d2q9X) is derived

similarly to the hexagonal model of section 4.2.2. Two additional terms based on

gradients of the 
uid velocity are included in the equilibrium population formulas.

Everything else, including all the coe�cients w1; y1; w20; : : : of the standard collision
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operator d2q9 remain the same. The equilibrium population formulas for d2q9X are

as follows,

F
�eq
i

II
= �

h
y0 + y1(~ei � ~V ) + y20(~ei � ~V )(~ei � ~V ) + y21(~V � ~V )

i
+

y31 (~ei � ~r(~ei � �~V )) + y32 (~r � �~V )
F

�eq
i

I
= �

h
w0 + w1(~ei � ~V ) + w20(~ei � ~V )(~ei � ~V ) + w21(~V � ~V )

i
+

w31 (~ei � ~r(~ei � �~V )) + w32 (~r � �~V )
F0

�eq = �
h
z0 + z21(~V � ~V )

i
+ z32 (~r � �~V )

(4.48)

2 c2 w31 + 4w32 + 4 c2 y31 + 4 y32 + z32 = 0 (4.49)

y31 = w31=4 (4.50)

Equation 4.49 is necessary for mass conservation and can be used to determine the

coe�cient z32. Equation 4.50 is necessary to remove an unwanted (anisotropic) mo-

mentum di�usion term in the Chapman-Enskog expansion. The velocity gradients of

the extended collision operator must be computed using �nite di�erences unless they

are known by other means.

The shear and bulk viscosities of the d2q9X operator have the following values

(calculated using the Chapman-Enskog procedure),

�� =
c2�t

6
(2� � � 1) � c4w31 (4.51)

�� =
c2�t

3
(2� � � 1) (1 � 3w0 � 6 y0) � 2 c4 w31 � 2 c2(w32 + 2 y32)

The parameter y32 is chosen y32 = w32=4 for simplicity. Once the relaxation parameter

� � is set equal to one, the coe�cient w31 is chosen to achieve the desired kinematic

viscosity given the discretization parameters �x;�t. The coe�cient w32 is chosen

to achieve the desired bulk viscosity. In the case of the hybrid method d2q9H, the

bulk viscosity of equation 4.51 is chosen equal to the bulk viscosity of the standard

collision operator given by equation 4.47.
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4.3.2 Three-dimensional 15-speed model (d3q15)

The orthogonal 15-speed model is abbreviated by the symbol d3q15 following the

convention of Qian [41]. A 3-dimensional cubic lattice with 15 populations at each

node is used as shown in �gure 4-3. The populations Fi
II i = 7; 8; 9; 10; 11; 12; 13; 14

move along the diagonal directions at the speed
p
2c, and the populations Fi

I i =

1; 2; 3; 4; 5; 6 move along the non-diagonal directions at the speed c = �x=�t. The

non-moving population is F0. The relaxation and advection steps are given by the

following formulas,

Fi(~x+ ~ei�t; t+�t) = Fi(~x; t) + (�1=� ) [Fi(~x; t)� Fi
eq(~x; t)]

F0(~x; t+�t) = F0(~x; t) + (�1=� ) [F0(~x; t)� F0
eq(~x; t)]

i = 1; : : : ; 8

(4.52)

� =
1

2
+
3�t �

�x2

The relaxation parameter � is chosen to achieve the desired kinematic viscosity �

given the space and time discretization parameters �x;�t. The vector ~ei stands for

the 14 velocity directions of the 3-dimensional cubic lattice, as shown in �gure 4-3.

The velocity ~V (~x; t) and density �(~x; t) are computed from the populations Fi(~x; t)

using the relations,

�(~x; t) =
P8

i=0 Fi(~x; t)

�(~x; t) ~V (~x; t) =
P8

i=1 Fi(~x; t)~ei
(4.53)

The variations of density around its mean value (spatial mean which is constant in

time) provide an estimate of the 
uid pressure P (~x; t), according to the following

equation,

P (~x; t) = c2s (�(~x; t)� <�> ) : (4.54)

The speed of sound is,

cs =
q
(2w0 + 8 y0) (�x=�t) (4.55)
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Figure 4-3: Velocity directions for lattice Boltzmann d3q15 in three-dimensions.

where the coe�cientsw0; y0 are discussed below. The equilibriumpopulations Fi
eq(x; t)

are given by the following equations,

F eq
i

II = �
h
y0 + y1(~ei � ~V ) + y20(~ei � ~V )(~ei � ~V ) + y21(~V � ~V )

i
F
eq
i

I
= �

h
w0 + w1(~ei � ~V ) + w20(~ei � ~V )(~ei � ~V ) + w21(~V � ~V )

i
F0

eq = �
h
z0 + z21(~V � ~V )

i (4.56)

6w0 + 8 y0 + z0 = 1 ;

y1 = 1=(12 c2) ; y20 = 1=(16 c4) ; y21 = �1=(48 c2)
w1 = 1=(3 c2) ; w20 = 1=(2 c4) ; w21 = �1=(6 c2)
z21 = �1=(3 c2) ; c = �x=�t

The coe�cient y0 is chosen y0 = (1=8)w0 for simplicity. The coe�cient w0 can

be varied to adjust the speed of sound and the bulk viscosity within the stability

constraints w0 > 0 and z0 > 0. The shear and bulk viscosity of the d3q15 collision
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operator have the following values (calculated using the Chapman-Enskog procedure),

� =
c2�t

6
(2� � 1) (4.57)

� =
c2�t

3
(2� � 1) (1 � 3w0 � 12 y0)

The extended collision operator (d3q15X) for the orthogonal 15-speed model is derived

similarly to the hexagonal model of section 4.1.1. Two additional terms based on

gradients of the 
uid velocity are included in the equilibrium population formulas.

Everything else, including all the coe�cients w1; y1; w20; : : : of the standard collision

operator d3q15 remain the same. The equilibrium population formulas for d3q15X

are as follows,

F
eq
i

II
= �

h
y0 + y1(~ei � ~V ) + y20(~ei � ~V )(~ei � ~V ) + y21(~V � ~V )

i
+

y31 (~ei � ~r(~ei � �~V )) + y32 (~r � �~V )
F eq
i

I = �
h
w0 + w1(~ei � ~V ) + w20(~ei � ~V )(~ei � ~V ) + w21(~V � ~V )

i
+

w31 (~ei � ~r(~ei � �~V )) + w32 (~r � �~V )
F0

eq = �
h
z0 + z21(~V � ~V )

i
+ z32 (~r � �~V )

(4.58)

2 c2 w31 + 6w32 + 8 c2 y31 + 8 y32 + z32 = 0 (4.59)

y31 = w31=8 (4.60)

Equation 4.59 is necessary for mass conservation and can be used to determine the

coe�cient z32. Equation 4.60 is necessary to remove an unwanted (anisotropic) mo-

mentum di�usion term in the Chapman-Enskog expansion.

The shear and bulk viscosity of the d3q15X operator have the following values

(calculated using the Chapman-Enskog procedure),

� =
c2�t

6
(2� � 1) � c4w31 (4.61)

� =
c2�t

3
(2� � 1) (1 � 3w0 � 12 y0) � 2 c4w31 � c2 (2w32 + 8 y32)

The coe�cient y32 is chosen y32 = w32=8 for simplicity. Once the relaxation parameter

� is set equal to one, the coe�cient w31 is chosen to achieve the desired kinematic
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Figure 4-4: The velocity �eld of the hexagonal Taylor vortex and the hexagonal shear

ow are shown in �gures (a) and (b) respectively. Both 
ows have periodic boundary

conditions.

viscosity � given the discretization parameters �x;�t. The coe�cient w32 is chosen

to achieve the desired bulk viscosity. In the case of the hybrid method d3q15H, the

bulk viscosity of equation 4.61 is chosen equal to the bulk viscosity of the standard

collision operator given by equation 4.57.

The following two sections present experimental evidence regarding the accuracy

of the hexagonal d2q7 and the orthogonal d2q9 models in initial and in boundary

value problems. Experimental results for the three-dimensional d3q15 model are not

presented here. However, the algorithm presented above (both d3q15 and d3q15X)

has been tested on simple 
ows, and appears to work correctly. The accuracy of the

d3q15 model is expected to be comparable to the accuracy of the d2q9 model.

4.4 Experiments | initial value
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First, initial value problems are tested. For this purpose, the analytic solutions of

a decaying Taylor vortex and a decaying shear 
ow are used. These 
ows are two-

dimensional and have periodic boundary conditions. Figure 4-4 shows the velocity

vector �elds of the 
ows. The decaying Taylor vortex (G.I. Taylor1923 [51]) has the

following analytic solution,

Vx(x; y; t) = (�1=A) cos(Ax) sin(By) exp(�2� �t)
Vy(x; y; t) = (1=B) sin(Ax) cos(By) exp(�2� �t)
P (x; y; t) = �(1=4) [cos(2Ax)=A2 + cos(2By)=B2] exp(�4��t)

(4.62)

where the constant � is equal to (A2 + B2)=2, and � is the kinematic viscosity. The

length constants A;B are chosen A = 1 and B = 2=
p
3 to produce the hexagonal

Taylor vortex, and A = B = 1 to produce the orthogonal Taylor vortex. The

former is used to test the hexagonal 7-speed model, and the latter is used to test

the orthogonal 9-speed model. The 
ow region of the hexagonal Taylor vortex is

0 <= x <= 2� and 0 <= y <= �
p
3, and can be covered exactly by a hexagonal

lattice using periodic boundary conditions. Similarly, the 
ow region of the orthogonal

Taylor vortex is 0 <= x <= 2� and 0 <= y <= 2�, and can be covered exactly by

an orthogonal lattice using periodic boundary conditions.

The decaying shear 
ow has the following analytic solution,

Vx(x; y; t) = A

Vy(x; y; t) = B cos(k x� k A t) exp(�k2 � t)
P (x; y; t) = constant

(4.63)

where the constant k is chosen k = 1 so that x varies between 0 <= x <= 2�, and

the length constants A;B are chosen A = B = 1 so that the horizontal velocity is

equal to the maximumvertical velocity. The vertical extent of the shear 
ow is chosen

0 <= y <= �
p
3 for the hexagonal case, and 0 <= y <= 2� for the orthogonal case

in complete analogy with the Taylor vortex.

In all of the results reported below, the coe�cient of shear viscosity is chosen

equal to one, � = 1. The measured error V E denotes the velocity relative error, and
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is calculated according to the following formula,

V E =

P
x;y jVx � V �

x jP
x;y jV �

x j
+

P
x;y jVy � V �

y jP
x;y jV �

y j
(4.64)

where V � denotes the exact analytic solution, and the sums are taken over the whole

grid. In the case of the Hagen-Poiseuille 
ow and the oscillating plate problem (see

section 4.5) where
P

x;y jV �

y j = 0, we use a di�erent normalization as follows,

V E =

P
x;y jVx � V �

x j+
P

x;y jVy � V �

y jP
x;y jV �

x j
(4.65)

Double-precision arithmetic is used in all of the reported results unless stated other-

wise (for example in �gure 4-13).

The Mach number M is de�ned using the maximum 
uid speed at time zero,

which is equal to 1:0 for all the test cases,

M = 1=cs = �t=(�x
p
3w0) (4.66)

Also, the pseudo-Mach number or \computational Mach number" Mc is de�ned,

Mc = 1=c = �t=�x (4.67)

Below,Mc is used in the �gures rather than M because the discretization error of the

lattice Boltzmann method depends on Mc rather than M as we will see below. In

the case of the Taylor vortex, which is a solution of the incompressible Navier Stokes

equations, the compressible e�ects are kept smaller than the discretization error by

choosing w0 = 1=7. Both the compressible e�ects and the discretization error decrease

quadratically withMc, and the choice w0 = 1=7 keeps the compressible e�ects smaller

than the discretization error in the Taylor vortex at least (see section 4.4.4). In the

case of shear 
ow, which has zero density gradient and is a solution of the compressible

Navier Stokes equations, the error is independent of the Mach number M and it

depends only on Mc.

For the hexagonal 7-speed model, the choice w0 = 1=7 produces a Mach number

that satis�es the relationM = (1:53Mc) = (1:53�t=�x). For the orthogonal 9-speed
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model, the choice y0 = w0=4 and w0 = 1=7 produces M = (1:53Mc) also. Another

choice w0 = 10�6=3 is discussed brie
y in section 4.4.3 for the purpose of allowing

high Mach numbers with small Mc in particular M = (103Mc). We also note that

di�erent values of w0 are used in section 4.4.4 for the purpose of examining the error

of the lattice Boltzmann method as a function of �t while keeping the Mach number

constant. In particular, the Mach number is kept constant by varying w0 in proportion

to �t2 (see equation 4.68). This study allows us to distinguish between compressible

e�ects and the discretization error of the lattice Boltzmann method.

4.4.1 Initialization error

This section compares the di�erent methods of initialization which are described in

section 4.2, and are denoted by d2q7F0, d2q7F1, d2q7F1M, and d2q7H. We recall

that the simpli�ed �rst-order Chapman-Enskog expansion (equation 4.37, 4.38) is

identical to the hybrid method d2q7H, and thus there is no need to test it separately.

Figure 4-5 plots the error during the �rst 10 steps of the simulation. A 30�30 grid is

used (�x = 2�=30 = 0:2094). Figure (a) plots the error in the case of the hexagonal

Taylor vortex, using �t = 0:001 which gives � = 0:5912 for the standard collision

operator. The curves shown correspond to d2q7F0, d2q7F1, d2q7F1M, d2q7H (solid,

dashed, dotted, dash-dotted lines). Figure (b) plots the same data using �t = 0:025

which gives � = 2:780 for the standard collision operator. We can see that the �rst-

order momentum-conserving Chapman-Enskog expansion d2q7F1M and the hybrid

method d2q7H produce very similar results, and they are are the most accurate in

all cases. We can also see that the �rst-order Chapman-Enskog expansion d2q7F1

that does not conserve momentum is more accurate than the zero-order expansion

d2q7F0 when � < 1 and inversely when � > 1. Figures (c) and (d) plot the same

data as �gures (a) and (b) for the case of shear 
ow. The results are qualitatively

the same. The experiments demonstrate that the hybrid method can be used to

initialize accurately the populations Fi from the 
uid variables �; Vx; Vy in an initial
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Figure 4-5: The four initialization methods d2q7F0, d2q7F1, d2q7F1M, d2q7H (solid,

dashed, dotted, dash-dotted lines) are compared using a 30 � 30 grid and periodic
boundary conditions. Figures (a) and (b) plot the error in simulating the hexagonal

Taylor vortex using �t = 0:001 and �t = 0:025 respectively (� = 0:5912 and � =

2:780). Figures (c) and (d) plot the same data in the case of shear 
ow.
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Figure 4-6: The performance of the extended collision operator is shown during re-
peated iterations. The error is plotted against Mc with �t varying, and is calculated

at the �nal time T = 1:0. The curves correspond to the hybrid method d2q7H, to the
extended collision operator d2q7X using �nite di�erences to calculate the gradients,
and again to the extended collision operator d2q7X using the known analytic solution
to calculate the gradients (solid, dashed, dotted lines). Figure (a) shows the error in
simulating the hexagonal Taylor vortex, and �gure (b) shows the error in simulating

the hexagonal shear 
ow.

value problem.

4.4.2 Iterating the extended collision operator

This section examines the performance of the extended collision operator when iter-

ated many times. We recall that the extended collision operator uses the gradients

of the 
uid velocity to control the viscosity. Figure 4-6 shows the error in simulat-

ing the hexagonal Taylor vortex and the hexagonal shear 
ow using a 30 � 30 grid.

The error is plotted against Mc with �t varying, and is calculated at the �nal time

T = 1:0 when the maximum velocity of the hexagonal Taylor vortex is approximately

1=10 of its initial value. The curves correspond to the hybrid method d2q7H, and to



CHAPTER 4. THE LATTICE BOLTZMANN METHOD 144

the extended collision operator d2q7X using �nite di�erences to calculate the gradi-

ents, and again to the extended collision operator d2q7X using the exact solution to

calculate the gradients (solid, dashed, dotted lines). When the curves of �gure 4-6

intersect atMc = 0:026, the relaxation parameter � of the standard collision operator

is equal to one, and the coe�cients w31; w32; z32 of the extended collision operator

vanish (see equation 4.32). At this point, the extended collision operator is identical

to the standard collision operator.

As Mc decreases below the value Mc = 0:026, the error of the extended collision

operator d2q7X using �nite di�erences to calculate the gradients begins to grow and

approaches relative error one as Mc goes to zero (dashed line). By contrast, the error

of the extended collision operator d2q7X using the analytic solution to calculate the

gradients decreases towards a minimum error (dotted line) which is determined by

the spatial discretization error of the 30 � 30 grid. This shows that the use of �nite

di�erences creates problems after repeated iterations. As explained in section 4.2 the

inexactness of �nite di�erences produces an error in viscosity which accumulates and

becomes large after repeated iterations.

The hybrid method d2q7H does not su�er from the problems of the extended col-

lision operator after repeated iterations because the hybrid method uses the standard

collision operator at the inner nodes after the �rst step (all nodes are inner in this

experiment). Figure 4-6 shows that the hybrid method performs well in the case of

periodic boundary conditions, and remains accurate asMc goes to zero (solid line). In

section 4.5, it is shown that the hybrid method performs well in the case of boundary

value problems also.

4.4.3 Comparison with projection method

This section compares the error of the hybrid method d2q7H and the error of an

explicit �nite di�erence projection method in simulating the hexagonal Taylor vortex

and the hexagonal shear 
ow with periodic boundary conditions. Both of these 
ows
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Figure 4-7: The error of the lattice Boltzmann method d2q7H is compared against the

error of the explicit �nite di�erence projection method EP7. The curves correspond

to d2q7H using 30 � 30 grid, d2q7H using 60 � 60 grid, EP7 using 30� 30 grid, and

EP7 using 60 � 60 grid (solid, dashed, dotted, dash-dotted lines). Figures (a) and
(b) show the error in simulating the hexagonal Taylor vortex, and �gures (c) and (d)

show the error in simulating the hexagonal shear 
ow.
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are de�ned in the hexagonal region 0 <= x <= 2� and 0 <= y <= �
p
3, which

means that the �nite di�erence projection method must use the discretization �y =

�x
p
3=2. Below, we refer to the projection method with the symbol EP7 when it

is applied to a hexagonal region, and with the symbol EP9 when it is applied to

an orthogonal region (this is done in later sections). The explicit �nite di�erence

projection method is described in section 3.4.

Figure 4-7 (a) plots the error in simulating the hexagonal Taylor vortex against

Mc with �t varying. The error is calculated at the �nal time T = 1:0 when the

maximum velocity of the hexagonal Taylor vortex is approximately 1=10 of its initial

value. The curves correspond to d2q7H using 30� 30 grid, d2q7H using 60� 60 grid,

EP7 using 30�30 grid, and EP7 using 60�60 grid (solid, dashed, dotted, dash-dotted
lines). Figure (b) plots the same data against the dimensionless ratio �t �=�x2 which

facilitates comparison between di�erent grids. Figures (c) and (d) plot the same data

for shear 
ow. We can see that the Taylor vortex triggers an instability in the explicit

projection method EP7 when �t �=�x2 >= 0:2, but the shear 
ow does not trigger

any instability.

With regard to the lattice Boltzmann method, we observe that it fails to approx-

imate the solution (has a relative error of 1:0) when Mc is larger than 0:2 approxi-

mately. In the case of the Taylor vortex, which is a solution of the incompressible


uid 
ow equations, it may appear that the problem arises from the compressibility

of the lattice Boltzmann 
uid (when Mc � 0:2, the Mach number is approximately

M = 1:53Mc = 0:3). In the case of the shear 
ow, however, compressibility is not

important. The shear 
ow is a solution of the compressible 
uid 
ow equations, and

it should be easily computed by the lattice Boltzmann method both at low and high

Mach numbers. In fact, the shear 
ow can be computed easily at high Mach numbers

by using a smaller w0, for example w0 = 10�6=3 (see below).

The limitations of the lattice Boltzmann method shown in �gure 4-7 when Mc

is larger than 0:2 persist independent of the Mach number. The limitations arise
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because the microscopic speed �x=�t becomes comparable to the 
uid speed when

Mc approaches 1:0, and the high-order terms in the Chapman-Enskog expansion

(which are neglected in deriving the Navier Stokes equations) become signi�cant,

and produce behavior that di�ers from the Navier Stokes equations.

With regard to simulating shear 
ow at high Mach numbers, we can choose w0 =

10�6=3 which gives M = 103Mc. The error of the lattice Boltzmann method d2q7H

in simulating shear 
ow with M = 103Mc is identical to the error plotted in �gure 4-

7(c). The error in simulating shear 
ow is independent of the Mach number because

the density gradients are zero everywhere.

4.4.4 Quadratic convergence

This section shows that the lattice Boltzmann method has second-order convergence

both in space and in time. Second-order convergence in space means that the error

decreases quadratically with �x while keeping the dimensionless ratio �t �=�x2 con-

stant (Fletcher [18, p.75]). Second-order convergence in time means that the error

decreases quadratically with �t while keeping the space discretization �x constant.

Furthermore, we are interested in the true discretization error and not the error that

arises from compressibility. When using a compressible 
uid code such as the lattice

Boltzmann method to simulate incompressible 
ow such as the Taylor vortex, it is

important to distinguish between the error that arises from compressibility and the

error that arises from �nite discretization.

In �gure 4-7 the Mach number decreases in proportion to Mc, and thus the e�ects

of compressibility and �nite discretization can not be distinguished without further

analysis. To distinguish between the e�ects of compressibility and discretization

error, we perform the same simulations as those in �gure 4-7, while keeping the Mach

number constant and varying the density coe�cient w0 as follows,

w0 =
1

3

�
�t

�xM

�2
(4.68)
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Figure 4-8: The error of d2q7H is plotted against Mc with �t varying, while keeping

the Mach number M constant and varying the density parameter w0 (two dashed

lines). For comparison purposes, the error of d2q7H when the Mach number varies

and the density parameter w0 = 1=7 is held constant is also shown (two solid lines).
Results are shown for a 30�30 and a 60�60 grid. Figures (a), (b), (c) correspond to

the hexagonal Taylor vortex at M = 0:02, the hexagonal Taylor vortex at M = 0:1,

and the hexagonal shear 
ow at M = 0:05 respectively.
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In �gure 4-8 (a), we show the error of d2q7H in simulating the hexagonal Taylor

vortex at constant Mach number M = 0:02 using a 30 � 30 grid and a 60 � 60

grid (two dashed lines). For comparison purposes, we also show the error of d2q7H

using constant w0 = 1=7 and variable Mach number M = 1:53Mc (two solid lines).

The constant Mach number curves are identical to the constant w0 curves except for

instabilities which are discussed below. This indicates that the compressible e�ects at

Mach numberM = 0:02 are smaller than the discretization error of both the 30� 30

and 60 � 60 grids. The instability of the constant Mach number curves (dashed

lines) is expected and it occurs when the density coe�cient w0 given by equation 4.68

becomes greater than 1=6 which forces the density coe�cient z0 to become negative.

Similar instabilities can be seen in �gure 4-8 (c) which plots the same experiment for

shear 
ow at constant Mach number M = 0:05.

It is important to note that if we keep the Mach number constant while decreas-

ing the grid spacing (�x), then a su�ciently �ne grid will eventually bring out the

compressible e�ects. For example, �gure 4-8 (b) shows the same data as �gure 4-8 (a)

while keeping the Mach number constant at M = 0:1. In the case of the 30� 30 grid

the constant Mach number curves are identical to the constant w0 curves as before,

which indicates that the discretization error of the 30 � 30 grid is larger than the

compressible e�ects of Mach number M = 0:1. In the case of 60 � 60 grid however,

the constant Mach number curves reach a minimum error (as �t goes to zero) that is

much greater than the minimum error of the constant w0 curves. This is because the

discretization error of the 60� 60 grid becomes smaller than the compressible e�ects

of Mach number M = 0:1 when �t �=�x2 becomes smaller than 0:1 approximately.

In general, we can calculate the Mach number at which compressible e�ects be-

come larger than the discretization error of any grid by doing more numerical experi-

ments of the kind shown in �gure 4-8. Such a study is not necessary for our purposes

however. Figures 4-8(a) and 4-8(b) are enough to show that the compressible e�ects

in simulating the Taylor vortex are smaller than the discretization error of the 30�30
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and 60� 60 grids when w0 is constant and the Mach number varies as M = 1:53Mc.

Accordingly, we can examine the error curves of �gure 4-8 and also of �gure 4-7 to

�nd out how the discretization error of the lattice Boltzmann method decreases with

�ner resolution.

If we examine the logarithmic plots of �gure 4-7, we see that the error decreases

quadratically with �t (it has a slope of �2) until a minimum spatial discretization

error is reached. In addition the error decreases by a factor of 4 when we go from

the 30 � 30 grid to the 60 � 60 grid while keeping the dimensionless ratio �t �=�x2

constant, see �gures 4-7 (b) and 4-7 (d). In other words the lattice Boltzmann method

has second-order convergence both in space and in time. In section 4.5 we will verify

the second-order convergence for boundary value problems also. The explicit �nite

di�erence projection method EP7 has �rst-order convergence in time and second-

order convergence in space. The �rst-order convergence in time of the projection

method EP7 can be seen most easily in �gures 4-7 (c) and 4-7 (d).

4.4.5 7-speed versus 9-speed

Here, the accuracy of the hexagonal 7-speed model is compared against the accuracy

of the orthogonal 9-speed model. Figure 4-9 shows the error of d2q7H applied to the

hexagonal Taylor vortex, and the error of d2q9H applied to the orthogonal Taylor

vortex (solid and dashed lines). In addition, the error of the explicit �nite di�erence

projection method is shown when the projection method is applied to the hexagonal

Taylor vortex with �y = �x
p
3=2, and also to the orthogonal Taylor vortex with

�y = �x (dotted and dash-dotted lines). A 30 � 30 grid is used, and the error is

calculated at the �nal time T = 1:0. We can see that the explicit �nite di�erence

projection method performs similarly on the hexagonal and the orthogonal Taylor

vortices. By contrast, the orthogonal 9-speed model d2q9H is signi�cantly more

accurate than the hexagonal 7-speed model d2q7H on this speci�c problem.
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Figure 4-9: The error of d2q7H applied to the hexagonal Taylor vortex, and the error
of d2q9H applied to the orthogonal Taylor vortex are shown (solid and dashed lines).

In addition the error of the explicit �nite di�erence projection method is shown when
applied to the hexagonal Taylor vortex with �y = �x

p
3=2 and also the orthogonal

Taylor vortex with �y = �x (dotted and dash-dotted lines).

4.5 Experiments | boundary value

In this section, the orthogonal 9-speed hybrid model d2q9H is tested on boundary

value problems with exact solutions, and is also compared against the explicit �nite

di�erence projection method EP9. In all of the test cases examined here, both the

density and the velocity values are speci�ed exactly at the boundary. The question

of how to compute the density at a boundary (such as a non-slip wall) using the

computed solution is discussed later in section 4.6.1.

The boundary value problems are the one-quarter Taylor vortex, the Hagen-

Poiseuille 
ow, and the oscillating plate above a stationary wall. Figure 4-10 shows

the velocity vector �elds of these 
ows, and also indicates the boundary nodes of each


ow by drawing a square around the boundary nodes. Figure 4-10 (c) is plotted at

time t = 0:4 when the oscillating plate starts moving to the left while the 
uid below

is still moving to the right.
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Figure 4-10: The velocity �eld of the one-quarter Taylor vortex, the Hagen-Poiseuille


ow, and the oscillating plate problem are shown in �gures (a), (b), (c) respectively.

Boundary nodes are marked with a square. Figure (c) is plotted at time t = 0:4 when
the oscillating plate starts moving to the left and the 
uid below is still moving to

the right.
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The one-quarter Taylor vortex is de�ned in the region �=2 <= x <= 3�=2 and

�=2 <= y <= 3�=2. The exact solution is given by equation 4.62 with A = B = 1.

The velocity and pressure are speci�ed at the boundary by evaluating the exact

solution at the horizontal and vertical lines �=2 <= x <= 3�=2 and �=2 <= y <=

3�=2. From the pressure, we calculate the density using equation 4.33.

The Hagen-Poiseuille 
ow is de�ned in the region 0 <= x <= 1 and 0 <= y <= 1.

The analytic solution is as follows,

Vx(x; y; t) = �(y2 � y) �P = (2�)

Vy(x; y; t) = 0

P (x; y; t) = (0:5� x) �P

(4.69)

The pressure gradient �P is chosen �P = (8:0�) so that the maximum 
uid speed

is 1:0 when y = 1=2. The velocity and the density are speci�ed at the boundary by

evaluating the exact solution at 0 <= x <= 1 and 0 <= y <= 1.

The oscillating plate problem is de�ned in the region 0 <= x <= 1 and 0 <=

y <= 1 with periodic boundary conditions in the horizontal direction x = 0 and

x = 1. The velocity is speci�ed at the top and bottom plates by evaluating the exact

solution, namely,

y = 1 : Vx = cos(! t) Vy = 0

y = 0 : Vx = 0 Vy = 0
(4.70)

The density at the top and bottom plates is set equal to 1:0 (the exact solution has

constant pressure everywhere). The frequency of oscillation ! is chosen ! = 20 so

that the oscillating plate executes 3:18 cycles of oscillation during the time interval

T = 1:0 which is used for testing (this is an arbitrary choice). The analytic solution
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of the oscillating plate problem (see section 2.5.3) is given by the following equations,

Vx(x; y; t) = (coshA sinA(�2 coshB sinB cos!t+ 2 cosB sinhB sin!t)

� cosA sinhA(2 coshB sinB sin!t+ 2 cosB sinhB cos!t))

= (cos 2B � cosh 2B)

Vy(x; y; t) = 0

P (x; y; t) = constant

(4.71)

where A = y
q
!=(2�) and B =

q
!=(2�), and � is the kinematic viscosity.

In the case of steady 
ow such as the Hagen-Poiseuille 
ow, we initialize the

variables �; Vx; Vy equal to the exact steady state solution. Then, we iterate for 100

steps, and test whether the 
uid is in steady state. If the 
uid is in steady state, we

measure the velocity relative error V E. Otherwise, we keep iterating until the 
uid

reaches steady state. The goal of this procedure is to measure the error at steady

state and not to characterize how quickly the 
uid reaches steady state. The criterion

for steady state is that the relative change in velocity between successive iterations

divided by �t must be less than 10�6,P
x;y jVx(t+�t)� Vx(t)jP

x;y jV �

x j
< 10�6 �t (4.72)

and similarly for Vy.

In the case of transient 
ow such as the one-quarter Taylor vortex and the oscil-

lating plate, the error V E is measured at the �nal time T = 1:0 using equations 4.64

and 4.65.

4.5.1 Comparison between LB boundary schemes

The hybrid method d2q9H uses the standard collision operator at the inner nodes,

and the extended collision operator at the boundary nodes. An important issue is

the calculation of the gradients of the 
uid velocity at the boundary nodes. The best

results are achieved when the gradients of the 
uid velocity are speci�ed using the
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exact solution. In practice, however, the velocity gradients at the boundary nodes are

usually not known. For example, the gradient @Vx=@y at the top and bottom walls of

the driven cavity problem (not reported here but see Peyret&Taylor [38, p.199]) can

not be speci�ed because it is part of the solution that we seek to compute. When a

velocity gradient can not be speci�ed, �nite di�erences must be used to estimate it.

In the experiments below, di�erent ways of specifying the velocity gradients at

the boundary are tested. First, the exact solution is used to specify all of the veloc-

ity gradients at the boundary nodes. Second, �nite di�erences are used to estimate

all the velocity gradients at the boundary nodes. When the exact solution is used,

the method is denoted by d2q9HXD (XD stands for exact derivatives at the bound-

ary). When �rst-order asymmetric di�erences are used, the method is denoted by

d2q9H1FD. When second-order asymmetric di�erences are used, the method is de-

noted by d2q9H2FD.

In the experiments below, we also test the lattice Boltzmann scheme d2q9F0

which uses the standard collision operator at every node, both boundary and inner

nodes. At the boundary nodes, the method d2q9F0 sets the populations Fi equal to

the equilibrium values Fi
eq of the standard collision operator given by equation 4.13.

At startup, the method d2q9F0 normally initializes the Fi equal to the equilibrium

values Fi
eq of the standard collision operator. In the present section, however, the

extended collision operator is used for initialization in order to avoid initial errors,

and the standard collision operator is used after the �rst step.

Regarding boundary conditions for the explicit �nite di�erence projection method,

the velocity at the boundary is speci�ed from the exact solution, and the pressure

P is speci�ed from the requirement @P=@n = 0 at the boundary, where @n denotes

the direction normal to the boundary (Peyret&Taylor [38, p.160]). The condition

@P=@n = 0 is applied at the beginning of the SOR calculation using the values of P

at the previous time step, and the resulting boundary values for the pressure P are

held constant throughout the SOR calculation.
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Figure 4-11: The error of d2q9HXD, d2q9H1FD, d2q9H2FD, and d2q9F0 (solid, dashed,

dotted, and dash-dotted lines) is shown in simulations of the one-quarter Taylor

vortex, the Hagen-Poiseuille 
ow, and the oscillating plate | �gures (a), (b), (c)
respectively.
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Figure 4-11 compares the methods d2q9HXD, d2q9H1FD, d2q9H2FD, and d2q9F0

(solid, dashed, dotted, and dash-dotted lines) in simulations of the one-quarter Taylor

vortex, the Hagen-Poiseuille 
ow, and the oscillating plate, �gures (a), (b), (c) re-

spectively. A 30�30 grid is used, and the error is plotted againstMc with �t varying,

and is calculated at the �nal time T = 1:0. We can see that the standard collision

operator d2q9F0 achieves smallest error when the relaxation parameter � = 1, at

which point the standard and extended collision operators are identical. We can also

see that the hybrid method achieves best results when the velocity gradients at the

boundary nodes are speci�ed from the exact solution (method d2q9HXD). Further, we

can see that the �nite di�erences at the boundary (d2q9H1FD and d2q9H2FD) trigger

instabilities when Mc becomes large, and that �rst-order di�erences are a little more

stable than second-order di�erences. However, second-order di�erences are recom-

mended because they are more accurate with regard to the error in pressure (which

is not shown here, but see page 225). As explained on page 140, all the numerical

tests of this chapter examine the error in velocity only.

4.5.2 Comparison with incompressible �nite di�erences

Figure 4-12 compares the error of the lattice Boltzmann method d2q9HXD against

the error of the incompressible �nite di�erence projection method EP9 in simulations

of the one-quarter Taylor vortex, the Hagen-Poiseuille 
ow, and the oscillating plate,

�gures (a), (b), (c) respectively. The error is plotted against the dimensionless ratio

�t �=�x2 to facilitate comparison between di�erent grids. The curves correspond to

d2q9HXD using 30 � 30 grid, d2q9HXD using 60 � 60 grid, EP9 using 30 � 30 grid,

and EP9 using 60 � 60 grid (solid, dashed, dotted, dash-dotted lines). Figure (b)

shows most clearly the rate of convergence in time. The lattice Boltzmann method

has second-order convergence in time (slope �2), and the �nite di�erence method

EP9 has �rst-order convergence in time (slope �1). Both methods have second-order

convergence in space.
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Figure 4-12: The error of the lattice Boltzmannmethod d2q9HXD is compared against
the error of the incompressible �nite di�erence method EP9. The curves correspond

to d2q9HXD using 30� 30 grid, d2q9HXD using 60� 60 grid, EP9 using 30� 30 grid,

and EP9 using 60�60 grid (solid, dashed, dotted, dash-dotted lines). Figures (a), (b),
(c) show simulations of the one-quarter Taylor vortex, the Hagen-Poiseuille 
ow, and

the oscillating plate respectively. Figure (d) shows the same experiment as �gure (a)

using d2q9H1FD instead of d2q9HXD.
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It is worth noting that the lattice Boltzmannmethod has second-order convergence

overall even when �rst-order di�erences are used to calculate the velocity gradients

at the boundary nodes. This can be seen in �gure 4-12 (d) which corresponds to

the same experiment as �gure 4-12 (a) but uses the method d2q9H1FD instead of the

method d2q9HXD.

4.6 More on boundary conditions

4.6.1 Density calculation at non-slip wall

The modeling of a non-slip wall using the lattice Boltzmann method is discussed here.

Suitable boundary conditions must insure that the velocity components Vx; Vy vanish

at a non-slip wall, and further that there is a way of calculating the density at a

non-slip wall. There are basically two approaches of imposing boundary conditions

at a non-slip wall using the lattice Boltzmann method. The �rst approach is the

traditional bounce-back of the populations, which was in section 4.2.1. The second

approach, which is used in the simulations of 
ue pipes, employs the extended collision

operator of section 4.2.

The traditional approach is to bounce-back the populations Fi which are moving

outwards, so as to produce incoming populations. As stated earlier in section 4.2.1,

the approach of bounce-back leads to a non-slip wall which is located somewhere

beyond the last set of nodes of the grid, usually a distance of �x=2 away. However,

the exact location of the wall is not known, and may vary with the 
ow conditions

near the boundary (Cornubert&et al. [12], Ginzbourg&Adler [21]). Regarding the

density, the calculation of density at the wall is not an issue because there are no


uid nodes located on the non-slip wall. The density at the nodes nearest the wall is

performed in the same way as for all the interior nodes.

The second approach of modeling a non-slip wall, which is used in the simulations

of 
ue pipes, employs the extended collision operator of section 4.2 together with
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bounce-back as follows. First, a bounce-back of the outgoing populations is performed

in order to produce incoming populations which are used to calculate the density at

the wall. 5 Then, the extended collision operator is applied at the nodes of the

wall using Vx = Vy = 0. The gradients of Vx; Vy which are needed by the extended

collision operator are calculated using �nite di�erences. The bene�t of using the

extended collision operator at the boundary nodes is that the non-slip wall is located

precisely at the boundary nodes within numerical error.

4.6.2 Composite grid for lattice Boltzmann

This section outlines how to implement composite grids for the lattice Boltzmann

method using the extended collision operator.

The extended collision operator can be used to join a lattice Boltzmann grid with

a �nite di�erence grid of the same resolution. For this purpose, a single layer of over-

lapping nodes must be used. At the overlapping nodes, the future values of �; Vx; Vy

are calculated using the �nite di�erence method. Subsequently, the future values of

�; Vx; Vy (already calculated by �nite di�erences) are used to initialize populations

Fi at the overlapping nodes, which are used as boundary conditions for the lattice

Boltzmann method on the other side of the grid.

The scheme for a composite grid is as follows. Let us assume that lattice Boltz-

mann is used on a coarse grid at the left side. Going from left to right, there is a

point where we change from lattice Boltzmann to �nite di�erences. Further on, the

resolution of the �nite di�erence grid is changed to a �ner resolution. For simplic-

ity, let us assume that the resolution on the right side is twice the resolution on the

left side. Traditional interpolation can be used to join the two �nite di�erence grids

of di�erent resolution. Further on, as we move to the right, we change from �nite

5In my earlier paper [48], I suggested that the density at a wall should be calculated as the

average of the populations that \bring 
uid into the boundary node" from inner nodes and other

neighboring boundary nodes. Further numerical experiments, however, indicate that the average of

the populations after bounce-back, which is recommended above, is a slightly better approach.
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di�erences to lattice Boltzmann at the �ne resolution.

An issue to remember is that the speed of sound in the lattice Boltzmann method

is proportional to
p
w0�x=�t where w0 is a density parameter. Therefore, if the

spacing �x is halved, the density parameter must be divided by 4, or the time step

�t must be halved also. In the former case, the same time step is used globally,

and is determined by the �nest grid or the smallest spacing �x. In the latter case,

some computation is saved in the coarse grid. In particular, twice as many steps are

performed at the �ner resolution grid than at the coarser grid. This must be taken

into account in the transition region where �nite di�erences and interpolation are

used. Presumably, the coarse-grid values can be held constant every other \�ne" step

of the �ne grid.

The transition between grids of di�erent resolution inevitably introduces some

error. The desired goal is that the transition error (interpolation error, etc) should

not be larger than the error di�erence between the �ne and the coarse grid. This

must be tested especially with regard to the propagation of acoustic waves.

Finally, we might wonder why switch back and forth between lattice Boltzmann

and �nite di�erences, why not stay with �nite di�erences all the time. The answer

is that lattice Boltzmann may provide better stability properties, better handling of

boundary conditions, and better modeling of acoustic waves. These issues need to be

investigated further in the future.

4.7 Appendix

4.7.1 Roundo� error of lattice Boltzmann

In this section, the numerical roundo� error of the lattice Boltzmann method is

discussed using the 7-speed hexagonal LB model for simplicity. It is shown that

the roundo� error in the equilibrium population formulas can cause problems under

certain conditions. In particular, it is shown that the roundo� error increases as
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the ratio V=c becomes smaller (namely, as the Mach number becomes smaller), or

as the ratio �x=�t becomes larger. The increasing roundo� error is undesirable

because large values of �x=�t are useful for improving the accuracy (reducing the

discretization error) of the lattice Boltzmann method. Fortunately, double-precision

arithmetic mitigates the roundo� error to a large extent.

Let us consider the implementation of the lattice Boltzmann method according to

the equations 4.8,4.10,4.13. The roundo� error (numerical loss of precision) arises in

the computation of the equilibrium populations using equation 4.13. This formula is

a sum of four terms. If we factor out the density �(~x; t), the �rst term is a constant

coe�cient w0 and the remaining terms are proportional to V=c, (V=c)2, and (V=c)2

respectively (see table 4.1). Consequently when V=c is small, for example V=c ' 10�3,

the terms to be added have very disparate sizes and their sum su�ers a signi�cant

loss of accuracy when the computer aligns the numbers to be added (about 5 or 6

decimal places when V=c ' 10�3). If single-precision arithmetic is used (about eight

decimal places), then the loss of �ve digits is a serious problem.

term w0 w1 w20 w21

size 1 V=c (V=c)2 (V=c)2

Table 4.1: The terms of the equilibriumpopulation formula have di�erent sizes. When

they are added together, numerical roundo� error can be signi�cant.

Below, numerical experiments are described based on single-precision computer

arithmetic, which indicate that the error of the lattice Boltzmann method decreases

at �rst as the speed �x=�t increases, but after some point the error starts to increase

with larger �x=�t. For example in the Taylor vortex when the maximum 
uid speed

is 1:0, the error starts to increase at the rate of (�x=�t)1:4 when (�x=�t) is larger

than 300. Fortunately, the error growth disappears when double-precision arithmetic

is used, and this con�rms that the breakdown of the method is caused by roundo�

error.



CHAPTER 4. THE LATTICE BOLTZMANN METHOD 163

An approximate estimate of the extent of roundo� problems is that increasing the

ratio �x=�t by a factor of 10 increases the roundo� error in the equilibrium popula-

tions by a decimal digit. Therefore, double-precision arithmetic provides roundo�-free

operation with ratios �x=�t which are 107 times larger than the corresponding ra-

tios in single-precision arithmetic. Clearly, this is a very wide margin for practical

calculations.

Apart from using double-precision arithmetic, there is an algebraic transforma-

tion which reduces the roundo� error in the equilibrium populations, and it can

be used in all cases because it does not involve any additional cost. The algebraic

transformation does not eliminate the roundo� error however, and double-precision

arithmetic remains necessary. The idea is to modify the populations Fi de�ned by

equations 4.8, 4.10, 4.13 as follows,

cFi = Fi �w0 <�>dFi
eq = Fi

eq � w0 <�>
(4.73)

where the spatial average density < � > is constant in time and typically equal to

one. The non-moving population become cF0 = F0 � z0 < � > . The conservation

relations are modi�ed accordingly,

�(~x; t) =
P6

i=0
cFi(~x; t)+ <�>

�(~x; t) ~V (~x; t) =
P6

i=1
cFi(~x; t)~ei

(4.74)

The new equilibrium population formulas are as follows,

dFi
eq(~x; t) = w0 (�(~x; t)� <�> ) +

�(~x; t)
h
w1(~ei � ~V ) + w20(~ei � ~V )(~ei � ~V ) + w21(~V � ~V )

i

dF0eq(~x; t) = z0 (�(~x; t)� <�> ) + �(~x; t) z21 (~V � ~V )

(4.75)

The new equilibrium population formulas are numerically better than the original

ones because the term that used to be w0 � is now w0 (� � <�> ). The new quantity

(� � <�> ) is of the order P=(3c2w0) and the pressure P is of the order � V 2 as can
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Figure 4-13: The error of the lattice Boltzmann method d2q7H is shown when single-
precision arithmetic is used, when single-precision arithmetic together with the alge-

braic transformation of section 4.7.1 is used, and when double-precision arithmetic is
used (dotted, dashed, solid lines).

be seen from the Navier Stokes equations. Hence the expression w0 (� � < �> ) is

of the order �(V=c)2. The new formulas compute the same quantities as the original

formulas, and they incur a smaller loss of precision. Loss of precision still occurs when

the terms proportional to (V=c) and (V=c)2 are combined.

To verify the above analysis, �gure 4-13 compares the error of the lattice Boltz-

mann method (d2q7H version) when single-precision arithmetic is used, when the al-

gebraic transformation (together with single-precision arithmetic) is used, and when

double-precision arithmetic is used (dotted, dashed, solid lines). The data comes from

simulations of the hexagonal Taylor vortex with periodic boundary conditions and

30�30 grid. The error is plotted against Mc with �t varying and is calculated at the

�nal time T = 1:0. We see that when single-precision arithmetic is used, and the speed

�x=�t exceeds 300 (therefore Mc < 0:003), there is a growth of error that is caused

by numerical roundo�. The algebraic transformation with single-precision arithmetic

can reduce the roundo� error but can not prevent it. Double-precision arithmetic is
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necessary to prevent the error growth in the Taylor vortex for Mc < 0:003.

4.7.2 Lattice gas methods

This section discusses some background material regarding the relation between lat-

tice Boltzmann and lattice gas methods.

The lattice Boltzmann approach for simulating 
uids is an outgrowth of the lattice

gas approach [20, 15, 58, 23]. Both of these approaches have their origins in the kinetic

theory of gases. The common idea behind them is that the advection and collision

of particles can lead to the Navier-Stokes equations when the collision of particles

conserves mass, momentum, and energy. Furthermore, the particles must move along

the edges of a numerical grid that is highly symmetric [20, 15, 58] and is called

a lattice. For example, typical grids in two dimensions are the hexagonal and the

orthogonal lattices. In three dimensions, a cubic lattice is commonly used.

One di�erence between the lattice gas and the lattice Boltzmann approach is

that the former represents the lattice particles with binary values 0 or 1, while the

latter represents the particles with 
oating-point numbers. A binary value 0 or 1

represents the absence or presence of a single particle, while a 
oating-point number

represents a density of particles. The change from single-bit variables to 
oating-

point numbers has important consequences. From a mathematical point of view, the

lattice Boltzmann method is easier to analyze and more 
exible than the lattice gas

method. In addition, the lattice Boltzmann method does not require averaging to

remove statistical noise as does the lattice gas method.

One advantage of lattice gas over lattice Boltzmann is that single-bit operations

may be desirable for special-purpose computers and for future technologies (quantum-

bit computers have been mentioned in this context). Today, almost all computers

are designed for 
oating-point operations, and they are well-suited for the lattice

Boltzmann approach. However, special purpose computers have been built for single-

bit operations of the lattice gas approach [53], and they are promising.
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In comparing lattice gas and lattice Boltzmann approaches, it helps to view the

lattice Boltzmann method as a lattice gas method with a very large number of parti-

cles per direction as opposed to one or zero particles. Further, we may observe that

the number of velocity directions at each lattice node is a small number for the lat-

tice Boltzmann method (to reduce computer memory requirements), while it varies

from small to large for lattice gas methods. This is important because it has been

reported [17] that lattice gas methods with a large number of velocity directions are

more 
exible and closer to correct hydrodynamics than lattice gas methods with a

very small number of velocity directions. If this is true, then we may conclude that

there are two ways to improve lattice gas methods: either by increasing the num-

ber of particles per direction (which eventually produces lattice Boltzmann), or by

increasing the number of velocity directions per lattice node.

To carry the above discussion further, we may ask, \what about intermediate

schemes which increase both the number of directions per node and the number

of particles per direction?" For example, the 9-speed lattice Boltzmann model of

section 4.3 uses 9 double-precision 
oating point numbers (64 bits �9) per lattice
node because it has 8 directions and one non-moving population. An intermediate

scheme with equivalent amount of memory might use 72 directions per lattice node

with 28 particles (one byte) per direction. Would such an intermediate scheme perform

better than lattice gas and lattice Boltzmann? In general, the question is to �nd the

optimal distribution of bit-information to the physical degrees of freedom (number of

directions, and number of particles per direction). This is an unsolved problem.



Chapter 5

Arti�cial-viscosity �lter

This chapter discusses the need for an arti�cial-viscosity �lter for dissipating nu-

merical instabilities of high spatial frequency. Such a �lter must be used both with

the lattice Boltzmann method and with the compressible �nite di�erence method of

section 3.3 for 
ows with high Reynolds number.

Similar types of arti�cial-viscosity �lters have been traditionally used in simula-

tions of supersonic and transonic 
ow (Peyret&Taylor [38]). The idea of arti�cial-

viscosity �lters goes back to Richtmeyer&Morton [43] and perhaps earlier. However,

a theoretical analysis of such �lters is lacking, as far as I know. The analysis presented

below is a �rst step towards a better understanding of arti�cial-viscosity �lters.

5.1 Evidence of high-frequency oscillations

One of the di�culties of simulating subsonic compressible 
ow is the appearance of

slow-growing high-frequency oscillations in the computed solution. These oscillations

persist for a long time before they eventually overwhelm the solution and cause an

exponential blow-up. The spatial wavelength of the oscillations is of the order of the

mesh size �x. The conditions that seem to trigger the oscillations include impulsive

changes of density, high speed 
ow, and small viscosity, high Reynolds number 
ow.

167
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Flow examples include the uniform 
ow past a sharp obstacle at high speed, and a

jet of air impinging the labium of a 
ue pipe (see �gures 5-1 and 5-1).

Figure 5-1: Iso-density contours in the 
ue-labium region, mean blowing velocity

1104 cm/s. High spatial frequencies cause instabilities if left un-treated.

Figures 5-1 and 5-1 show snapshots of the density in simulations which would

become unstable without the use of an arti�cial-viscosity �lter. In particular, the 
ue-

labium region of a 
ue pipe is shown. The lattice Boltzmann method is used together

with a fourth-order arti�cial-viscosity �lter with � = 0:008 (explained below). Iso-

density contours are plotted, and also a horizontal cut of the density is shown at

the top of the picture. The horizontal cut starts from the bottom surface of the 
ue

channel, and continues parallel to and under the labium. High-frequency variations of

density can be seen at the region between the 
ue and the labium in both simulations.

Such high-frequency disturbances can cause instabilities if left untreated.
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Figure 5-2: Iso-density contours in the 
ue-labium region, mean blowing velocity
1995 cm/s. High spatial frequencies cause instabilities if left un-treated.

5.2 The fourth-order �lter

The high-frequency oscillatory instabilities can be mitigated by using a fourth-order

arti�cial-viscosity �lter as follows,

V n+1 = V n + �

 
�x4

@4V n

@x4
+�y4

@4V n

@y4

!
(5.1)

The above �lter is applied at the end of every integration step to all three variables

�; Vx; Vy. The parameter � controls the dissipation of the �lter. In the case of the

lattice Boltzmann method, a typical value of � is � = 0:008. In the case of the

compressible �nite di�erence of section 3.3, a larger value � is used, typically � =

0:015, because the �nite di�erence method is more sensitive to instabilities than the

lattice Boltzmann method. If � is too large, the solution is distorted (incorrect



CHAPTER 5. ARTIFICIAL-VISCOSITY FILTER 170

physical modeling) and may even become unstable. According to a linear stability

analysis which is described below, the largest value of � for stable 2D calculations is

1=16, namely � � 0:0625. However, � should be less than 1=32 to produce a desirable

�lter (see �gure 5-3). In practice, even smaller values of � are recommended (near

0:01) to avoid distorting the solution.

The discretization of the fourth-order �lter in the x-direction is as follows,

�4Vj = Vj�2 � 4Vj�1 + 6Vj � 4Vj+1 + Vj+2 (5.2)

The above discretization is used at all the interior points which are at least 2 grid

points away from the boundary. At the boundary points and at the next-to-boundary

points, the above �lter can not be applied for obvious reasons.

In order to �lter the nodes near the boundary in a consistent way, a third-order

di�erencing formula must be used at the next-to-boundary points as follows,

V n+1
j = V n

j + � (Vj�2 � 3Vj�1 + 3Vj � Vj+1) (5.3)

where the small index is j = J � 1 and the capital index J corresponds to the

boundary point. Similar formulas must be used for the other boundary orientations.

If the above formula is not used, stability problems may arise at the boundary.

A simple way to understand and to derive formula 5.3 is to consider the global

conservation of the 
ow (total change in �; Vx; Vy) after the �lter has been applied. To

do so, the contributions of the �lter must be summed at each grid point. For example,

the total contribution of the �lter at an interior point is zero: As the fourth-order

stencil (equation 5.2) is shifted along the x-direction, an interior point Vj is multiplied

by each one of the �ve \peaks" of the fourth-order stencil before being added-in, so

that the total sum is zero. By contrast, the total contribution of the fourth-order

stencil at points near the boundary (VJ to VJ�3) is generally non-zero. The third-

order di�erencing formula adds-in the necessary corrections to make the total sum

vanish, so that the �lter obeys global conservation.
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The third-order di�erencing formula at the next-to-boundary nodes plays an im-

portant role in the parallel-computing approach described in chapter 6. Normally,

the boundaries of a simulation include the interior obstacles, and the perimeter that

encloses the simulated region. In parallel simulations, additional boundaries arise

because the global simulation region is divided into subregions which are computed

in parallel. The crossing between two subregions is a kind of \arti�cial" bound-

ary. Applying the fourth-order �lter at the arti�cial boundary would require a lot

of communication between the subregions (the fourth-order stencil requires two next

neighbors). To save on communication, the fourth-order �lter is not applied at the

`arti�cial" boundary. However, the third-order formula must be used, instead, for

consistency. The author actually discovered the need for the third-order formula by

noticing a slow-growing instability at the arti�cial boundary of a parallel simulation.

5.3 Analysis of fourth-order �lter

The fourth-order �lter can be understood by considering the dissipation of frequencies

by a general m th-order �lter,

V n+1 = V n � ��xm
@mV n

@xm
(5.4)

The analysis here treats the �lter as an isolated system without considering the cou-

pling between the �lter and the numerical solution. We write V in terms of spatial

frequencies �,

V n = ei�x

V n+1 = Gei�x
(5.5)

where G is the growth factor, and the range of frequencies is 0 � � � �=�x. By

substituting equation 5.5 in equation 5.4, we obtain an estimate for the growth factor

G of the m th-order �lter,

G = 1� im �(��x)m (5.6)
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Here, the continuous version of the �lter is considered for simplicity. The discretiza-

tion of the �lter is discussed below. We have the following cases,

m = 2 G = 1 + �(��x)2 � � 0

m = 3 G = 1 + i�(��x)3 unstable ?

m = 4 G = 1� �(��x)4 � � 0

m = 6 G = 1 + �(��x)6 � � 0

m = 8 G = 1� �(��x)8 � � 0

(5.7)

The case m = 2 corresponds to physical viscosity, and therefore, it can not be used

for arti�cial-viscosity �ltering. The case m = 3 appears to amplify all frequencies for

any choice of �, and furthermore the frequencies are phase-shifted disproportionately.

Clearly,m = 3 is not a desirable �lter, and similar conclusions hold for any odd integer

m. The even integers m are suitable for �ltering, and the smallest possible integer

m = 4 corresponds to a fourth-order �lter.

In comparing the even power �lters, we may observe that the sign of � must alter-

nate with increasingm = 2; 4; 6; : : : in order to produce a dissipative �lter. Also, larger

values of m produce \sharper" �lters. A sharp �lter means that the low frequencies

are a�ected very little, and the high frequencies ��x � � are strongly dissipated, and

that the transition (cuto�) point is very abrupt. Finally, we may observe that the

stability constraints on � become more stringent with increasing m. In particular,

the condition jGj < 1 requires (for the continuous �lter),

j�j � 2

(��x)m
� 2

(�)m
(5.8)

The fourth-order �lter m = 4 is a good choice because it has the desirable �ltering

behavior as shown below in more detail, and also because m = 4 is the smallest

possible integer. The size of m is proportional to the computational cost of the �lter,

assuming that the �lter is implemented via �nite di�erences.

The discretization of the fourth-order �lter based on symmetric di�erences is given
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Figure 5-3: Ampli�cation of spatial frequencies by the fourth-order arti�cial-viscosity
�lter (2D discretized) for di�erent values of �.

by equation 5.2, and it produces the following growth factor,

G = 1� � (6� 4 ei��x � 4 e�i��x + ei2��x + e�i2��x)
= 1� � (6� 8 cos ��x+ 2 cos 2��x)

= 1� 4� (1 � cos��x)2

(5.9)

For stability purposes, the magnitude of the growth factor must be less than one,

� 1 � G � 1 (5.10)

Using the largest possible frequency ��x = � we obtain,

0 � � � 1

8
(5.11)

In two dimensions, it is easy to see that the growth factor becomes,

G = 1� 4�
h
(1 � cos �1�x)

2 + (1� cos �2�y)
2
i

(5.12)

which implies the following limits on �,

0 � � � 1

16
(5.13)
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The growth factor of equation 5.12 is plotted in �gure 5-3 for di�erent values of �.

We can see that the maximum value for stability � = 1=16 produces an undesirable

�lter because the very high frequencies are simply multiplied by a minus sign and are

not dissipated. For a desirable �lter, � should be

� � 1

32
(5.14)

In practice, even smaller values of � are preferred in order to prevent distortion of the

solution. For example, the value � = 0:008 produces very small dissipation of very

high frequencies only. This small dissipation is needed in order to avoid the high-

frequency numerical oscillations which appear in simulations of subsonic compressible


ow.

5.4 Other kinds of �lters

The frequency analysis presented above can be continued in order to understand

further the arti�cial-viscosity �lters. To this end, the shift operators S�1 and S+1 are

introduced, and they look as follows in the frequency domain,

S�1 V = e�i��x V
S+1 V = ei��x V

(5.15)

A second-order symmetric di�erencing formula can be written as follows,

(�x)2 �xx V = (S�1 � 2 + S+1)V = �2 (1 � cos ��x)V (5.16)

The discretization of an m th-order �lter for even m = 2l based on symmetric di�er-

ences can be found by applying l-times the above second-order di�erence operator,

V n+1 = V n � � (�x)2l (�xx)
l V n (5.17)

The growth factor is as follows (for a one-dimensional �lter),

G = 1 � � (�2)l (1� cos ��x)l (5.18)
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The above expression is a generalization of the fourth-order formula obtained previ-

ously for m = 4 or l = 2.

The frequency analysis can also be applied to \tophat" averaging �lters in the

context of 
uid 
ow simulations. When high frequencies must be removied, tophat

averaging is the �rst idea that comes to mind. For example, a two-point averaging

formula is as follows,

V n+1 =
(S�1 + S+1)

2
V n (5.19)

The above �lter is undesirable because it causes signi�cant dissipation of low frequen-

cies as well as high frequencies, and also because it causes phase distortion as can be

seen from the imaginary part of the growth factor (1 + ei��x)=2. Thus, we may try

a three-point averaging formula,

V n+1 =
(S�1 + 1 + S+1)

3
V n (5.20)

The growth factor is (1 + 2 cos ��x)=3, and has no imaginary components which is

good. However, the high frequencies ��x � �=3 are multiplied by a minus sign

and are not dissipated completely. For example, the highest frequency ��x = � is

multiplied by �1=3. The 3-point averaging �lter can be improved by considering a

weighted 3-point averaging,

V n+1 = V n (1� �) + �
(S

�1 + 1 + S+1)

3
V n (5.21)

The above expression is actually equivalent to a second-order viscosity �lter as can

be seen by rewriting it as follows,

V n+1 = V n + �
(S�1 � 2 + S+1)

3
V n (5.22)

Clearly, a weighted 3-point averaging �lter is undesirable because it a�ects the phys-

ical viscosity. Furthermore, it is easy to see that the 4-point, 6-point, 8-point, etc

averaging �lters produce undesirable phase distortion. 1 Therefore, the smallest viable

1A discussion of phase distortion according to an Electrical Engineering textbook can be found

in Siebert [47, p.472].
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choice is a 5-point averaging �lter. The general form of a weighted 5-point averaging

�lter, which does not cause phase distortion, can be written as follows where �; 
 are

real-numbers (weighting factors),

V n+1 = V n (1� �) + �
�S�2 + 
S�1 + 1 + �S+1 + 
S+2

1 + 2� + 2

V n (5.23)

The fourth-order arti�cial-viscosity �lter of equation 5.2 is a special case of the above

expression. This analysis puts in perspective the fourth-order arti�cial-viscosity �lter,

and shows why the 2-point, 3-point, and 4-point averaging �lters do not perform well

in 
uid 
ow simulations, a fact which can be easily tested in actual simulations.

5.5 The origin of high-frequency oscillations

The origin of the slow-growing high-frequency numerical oscillations in simulations

of compressible 
ow is not well understood. It is possible that the triggering of the

oscillations is both numerical and physical. Peyret&Taylor [38, p.323] report that

high-frequency oscillations appear both in explicit and implicit methods for transonic

and supersonic compressible 
ow, which hints that there may be a physical cause that

triggers the oscillations.

It has been conjectured (Fletcher [18, p.438] and elsewhere) that physical tur-

bulence may be triggering the numerical oscillations. Turbulent 
ow produces high

frequency disturbances whose wavelength is much smaller than the limited resolu-

tion of computer simulations. Accordingly, it has been conjectured that a type of

frequency aliasing may be happening from the turbulent length scales to the coarser

length scales of the simulation. However, the details of such a mechanism have never

been shown, and they are not obvious. In particular, the algebraic system of di�er-

ence equations (the simulation) is not a sampling process of the underlying di�erential

equations of 
uid 
ow. Perhaps, a more plausible conjecture is that the discrete sys-

tem of equations inherits a tendency for a kind of \discrete turbulence" from the

continuous equations of 
uid 
ow.
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A related point is that physical turbulence provides a mechanism for dissipating

very high-frequency oscillations. This is the energy cascade idea: the energy of the


ow cascades from large scale motion to smaller and smaller vortices until being

dissipated. Perhaps, the turbulent dissipation can be compared with the fourth-

order arti�cial-viscosity dissipation. This idea is the reason why fourth-order arti�cial

viscosity is sometimes referred to as a model of subgrid turbulence. However, a lot of

work remains to be done to understand how good (or how bad) a model of subgrid

turbulence is the fourth-order arti�cial viscosity.

This chapter completes the basic discussion of numerical methods and numerical

modeling. In the next chapter, the parallel computation of 
uid dynamics is discussed.

Subsequently, in chapter 7 examples of simulations of 
ue pipes are presented which

complement the simulations already presented in chapter 1.



Chapter 6

Parallel Computing

6.1 Introduction

This chapter presents an e�ective approach of simulating 
uid dynamics on a cluster

of non-dedicated workstations. Concurrency is achieved by decomposing the 
ow

problem into subregions, and by assigning the subregions to parallel subprocesses.

The use of explicit numerical methods leads to small communication requirements.

The parallel subprocesses automatically migrate from busy hosts to free hosts in order

to exploit the unused cycles of non-dedicated workstations, and to avoid disturbing

the regular users. The system is straightforwardly implemented on top of UNIX and

TCP/IP communication routines.

Typical simulations achieve 80% parallel e�ciency (speedup/processors) using 20

HP-Apollo workstations in a cluster where there are 25 non-dedicated workstations

total. Detailed measurements of e�ciency in simulating two and three-dimensional


ows are presented, and a theoretical model of e�ciency is developed which �ts

closely the measurements. Two numerical methods of 
uid dynamics are tested: �nite

di�erences and the lattice Boltzmann method. Further, it is shown that the shared-

bus Ethernet network is adequate for two-dimensional simulations of 
uid dynamics,

but limited for three-dimensional ones. It is expected that new technologies in the

178
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Figure 6-1: Simulation of 
ue pipe using 20 workstations in 5� 4 decomposition.

near future such as Ethernet switches, FDDI and ATM networks will make practical

three-dimensional simulations of 
uid dynamics on a cluster of workstations.

The parallel system presented here is well-suited for simulating subsonic 
ows

which involve both hydrodynamics and acoustic waves; for example, the 
ow of air

inside wind musical instruments. Such 
ow problems favor the use of explicit methods

(see section 3.2) which are perfectly parallelizable, and lead to low communication

requirements between parallel processes. The use of explicit methods is important for

parallel computing on a cluster of workstations because the communication capacity

between workstations is usually small.

In general, the use of explicit methods is recommended in situations where in-

creasing numbers of local processing units are available with minimum communica-
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tion capacity between the processing units. Such computers may be widespread in

the future; for instance, a future parallel computer may consist of millions of local

processing units, each unit having the power of one of today's workstations. With this

perspective in mind, the work presented herein for a cluster of 20 to 25 workstations,

may have applications for future parallel computers as well.

Outline

Section 6.2 presents some examples of parallel simulations which demonstrate the

power of the present approach, and also help to motivate the subsequent sections.

Section 6.3 reviews parallel computing and local-interaction problems in general.

Sections 6.4 and 6.5 describe the implementation of the parallel simulation system,

including the automatic migration of processes from busy hosts to free hosts. Sec-

tion 6.6 explains the parallelization of numerical methods for 
uid dynamics. Finally,

sections 6.7 and 6.8 measure experimentally the performance of the parallel system,

and also develop a theoretical model of parallel e�ciency for local-interaction prob-

lems which �ts well the measured e�ciency.

Most issues are discussed as generally as possible within the context of local-

interaction problems, and the speci�cs of 
uid dynamics are limited to section 6.2

and section 6.6.

6.2 Examples of distributed simulations

The parallel simulation system is used to simulate subsonic 
ow, and in particular,

the 
ow of air inside 
ue pipes of wind musical instruments such as the organ, the

recorder, and the 
ute. This is a phenomenon that involves the interaction between

hydrodynamic 
ow and acoustic waves: When a jet of air impinges a sharp obstacle in

the vicinity of a resonant cavity, the jet begins to oscillate strongly, and it produces

audible musical tones. The jet oscillations are reenforced by a nonlinear feedback
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from the acoustic waves to the jet. Similar phenomena occur in human whistling

and in voicing of fricative consonants (Shadle [46]). Although sound-producing jets

have been studied for more than a hundred years, they remain the subject of active

research (Verge94 [57, 56], Hirschberg [26]) because they are very complex.

The parallel system presented herein can easily simulate 
ue pipes using uniform

orthogonal grids as large as 1200 � 1200 in two dimensions (1:5 million nodes) and

even larger. Typically, smaller grids are employed, however, such as 800 � 500 (0:38

million nodes) in order to reduce the computing time. For example, if we divide

a 800 � 500 grid into twenty subregions and assign each subregion to a di�erent

HP9000/700 workstation, we can compute 70;000 integration steps in 12 hours of run

time. This produces about 12 milliseconds of simulated time, which is long enough

to observe the initial response of a 
ue pipe with a jet of air that oscillates at 1000

cycles per second.

Figure 6-1 shows a snapshot of a 800 � 500 simulation of a 
ue pipe by plotting

equi-vorticity contours (the curl of 
uid velocity). The decomposition of the two-

dimensional space (5� 4) = 20 is shown as dashed lines superimposed on top of the

physical region. The gray areas are walls, and the dark-gray areas are walls that

enclose the simulated region and demarcate the inlet and the outlet. The jet of air

enters from an opening on the left wall, impinges the sharp edge in front of it, and

it eventually exits from the simulation through the opening on the right part of the

picture. The resonant pipe is located at the bottom part of the picture.

Figure 6-2 shows a snapshot of another simulation that uses a slightly di�erent

geometry than �gure 6-1. In particular, �gure 6-2 includes a long channel through

which the jet of air must pass before impinging the sharp edge. Also, the outlet of

the simulation is located at the top of the picture as opposed to the right. This is

convenient because the air tends to move upwards after impinging the sharp edge.

Overall, �gure 6-2 is a more realistic model of 
ue pipes than �gure 6-1.

From a computational point of view the geometry of �gure 6-2 is interesting be-
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Figure 6-2: Simulation of a 
ue pipe using 15 workstations in 6 � 4 decomposition
with 9 subregions inactive.

cause there are subregions that are entirely gray, i.e. they are entirely solid walls.

Consequently, these subregions need not be assigned to any workstation. Thus, al-

though the decomposition is (6�4) = 24 , only 15 workstations are employed for this

problem. In terms of the number of grid nodes, the full rectangular grid is 1107�700

or 0:7 million nodes, but only 15=24 of the total nodes or 0:48 million nodes are

simulated. This example shows that an appropriate decomposition of the problem

can reduce the computational e�ort in some cases, as well as provide opportunities

for parallelism. More sophisticated decompositions can be even more economical

than the present ones. Uniform decompositions and identical-shaped subregions are

employed here because they are very simple.

The above simulations have been performed using the lattice Boltzmann method.
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Figure 6-3: A problem of local interactions in two dimensions, and its decomposition
(2� 2) into four subregions.

Similar results are obtained using a �nite di�erence approach. Further issues on

parallelization of 
uid dynamics are discussed in section 6.6. Next, the basics of local-

interaction problems are reviewed, and the implementation of the parallel system is

described. These issues are important for understanding in detail how the parallel

system works and why it works well.

6.3 Local-interaction computations

We de�ne a local-interaction computation as a set of \parallel nodes" that can be

positioned in space so that the nodes interact only with neighboring nodes. For exam-

ple, �gure 6-3 shows a two-dimensional space of parallel nodes which are connected by

solid lines representing the local interactions. In this example, the interactions extend

to a distance of one neighbor, and have the shape of a star stencil, but other patterns

of local interactions are also possible. Figure 6-4 shows two typical interactions which

extend to a distance of one neighbor, a star stencil and a full stencil.

The parallel nodes of a local-interaction problem are the �nest grain of parallelism
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that is available in the problem; namely, they are the �nest decomposition of the

problem into units that can evolve in parallel after communication of information with

their neighbors. In practice, the parallel nodes are usually grouped into subregions

of nodes, as shown in �gure 6-3 by the dashed lines. Each subregion is assigned to a

di�erent processor, and the problem is solved in parallel by executing the following

sequence of steps repeatedly,

� Calculate the new state of the interior of the subregion using the previous history

of the interior as well as the current boundary information from the neighboring

subregions.

� Communicate boundary information with the neighboring subregions in order

to prepare for the next local calculation.

The boundary that is communicated between subregions is the outer surface of the

subregions. Section 6.4.2 describes a good way of organizing this communication.

Local-interaction problems are highly-suited for parallel computing because the

communication is local, and also because the amount of communication relative to

computation can be controlled by varying the decomposition. In particular, when

each subregion is as small as one node (one processor per node), there is maximum

parallelism, and a lot of communication relative to the computation of each processor.

As the size of each subregion increases (which is called \coarse-graining"), both the

parallelism and the the amount of communication relative to computation decrease.

This is because only the surface of a subregion communicates with other subregions.

Eventually, when one subregion includes all the nodes in the problem, there is no

parallelism and no need for communication anymore. Somewhere between these ex-

tremes, we often �nd a good match between the size of the subregion (the \parallel

grain size") and the communication capabilities of the computing system. This is

the reason why local-interaction problems are very 
exible and highly desirable for

parallel computing.
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Figure 6-4: A star stencil and a full stencil represent two typical nearest neighbor

local interactions.

6.4 The distributed system

The design of the parallel system follows the basic ideas of local-interaction parallel

computing that are discussed above. This section describes the implementation of

the parallel system, which is based on UNIX and TCP/IP communication routines,

and exploits the common �le system of the workstations.

6.4.1 The main modules

For the sake of programming modularity, the parallel simulation system is organized

into the following four modules:

� The initialization program produces the initial state of the problem to be solved

as if there was only one workstation.

� The decomposition program decomposes the initial state into subregions, gen-

erates local states for each subregion, and saves them in separate �les, called

\dump �les". These �les contain all the information that is needed by a work-

station to participate in a distributed computation.

� The job-submit program �nds free workstations in the cluster, and begins a

parallel subprocess on each workstation. It provides each process with a dump
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�le that speci�es one subregion of the problem. The processes execute the same

program on di�erent data.

� The monitoring program runs every few minutes and checks that the parallel

processes are progressing correctly. If an unrecoverable error occurs, the dis-

tributed simulation is stopped, and a new simulation is started from the last

state which is saved automatically every 10 � 20 minutes. If a workstation

becomes too busy, automatic migration of the a�ected process takes place, as

explained in section 6.5.

All of the above programs (initialization, decomposition, submit, and monitoring) are

performed by one designated workstation in the cluster. Although it is possible to

perform the initialization and the decomposition in a distributed fashion in principle,

a serial approach is chosen here for simplicity.

Regarding the selection of free workstations, the strategy is to separate all the

workstations into two groups: workstations with active users, and workstations with

idle users (meaning more than 20 minutes idle time). An idle-user does not necessarily

imply an idle workstation because background jobs may be running; however, an idle-

user is preferred to an active user. Thus, the idle-user workstations are examined �rst

to see if the �fteen-minute average of the CPU load is below a pre-set value, in which

case the workstation is selected. For example, the load must be less than 0:6 where

1:0 means that a full-time process is running on the workstation. After examining

the idle-user workstations, the active-user workstations are examined, and the search

continues as long as more workstations are needed.

In addition to the above programs (initialization, decomposition, submit, and

monitoring), there is also the program that is executed in parallel by all the work-

stations. This program consists of two steps: \compute locally", and \communicate

with neighbors". Below we discuss issues relating to communication.
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6.4.2 Communication

The communication between parallel processes synchronizes the processes in an in-

direct fashion because it encourages the processes to begin each computational cycle

together with their neighbors as soon as they receive data from their neighbors.

Thus, there is a local near-synchronization which also encourages a global near-

synchronization. However, neither local nor global synchronization is guaranteed,

and in special circumstances the parallel processes can be several integration time

steps apart. This is important when a process migrates from a busy host to a free

host, as explained in section 6.5 (also see the appendix).

The communication of data between processes is organized by means of a well-

known programming technique which is called \padding" or \ghost cells" (Fox [19],

Camp [6]). Speci�cally, each subregion is padded with one or more layers of extra

nodes on the outside. One layer of nodes is used if the local interaction extends to

a distance of one neighbor, and more layers are used if the local interaction extends

further. Once the data is copied from one subregion onto the padded area of a

neighboring subregion, the boundary values are available locally during the current

cycle of the computation. This is a good way to organize the communication of

boundary values between neighboring subregions.

In addition, padding leads to programming modularity in the sense that the com-

putation does not need to know anything about the communication of the boundary.

As long as we compute within the interior of each subregion, the computation can

proceed as if there was no communication at all. Because of this separation between

computation and communication, it is possible to develop a parallel program as a

straightforward extension of a serial program. In the present system, the 
uid dy-

namics code can be compiled either into a parallel program or into a serial program

depending on the settings of a few C-compiler directives. The main di�erences be-

tween the parallel and the serial programs are the padded areas, and a subroutine

that communicates the padded areas between processes.
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The subroutine that communicates the padded areas between processes is imple-

mented using \sockets" and the TCP/IP protocol. A socket is an abstraction in the

UNIX operating system that provides system calls to send and receive data between

UNIX processes on di�erent workstations. A number of di�erent protocols (types of

behavior) are available with sockets, and TCP/IP is the simplest one. This is because

the TCP/IP protocol guarantees delivery of any messages sent between two processes.

Accordingly, the TCP/IP protocol behaves as if there are two �rst-in-�rst-out chan-

nels for writing data in each direction between two processes. Also, once a TCP/IP

channel is opened at startup, it remains open throughout the computation except

during migration when it must be re-opened, as explained later.

Opening the TCP/IP channel involves a simple hand-shaking, \I am listening at

this port number. I want to talk to you at this port number? Okay, the channel is

open." The port numbers are needed to identify uniquely the sender and the recipient

of a message so that messages do not get mixed up between di�erent UNIX processes.

Further, the port numbers must be known in advance before the TCP/IP channel is

opened. Thus, each process must �rst allocate its port numbers for listening to its

neighbors, and then write the port numbers into a shared �le. The neighbors must

read the shared �le before they can connect using TCP/IP.

6.5 Transparency to other users

The basic operation of the parallel simulation system was described in the previous

section. Here, the issues that arise when sharing the workstations with other users

are discussed. Speci�cally, there are two issues to consider: sharing the CPU cycles of

each workstation, and sharing the local-area network and the �le server. The sharing

of CPU cycles is achieved by employing an automatic migration of processes from

busy hosts to free hosts as explained below.
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6.5.1 Automatic migration of processes

The utilization of a workstation can be distinguished into three basic categories:

� (i) The workstation is idle.

� (ii) The workstation is running an interactive program that requires fast CPU

response and few CPU cycles.

� (iii) The workstation is running another full-time process in addition to a par-

allel subprocess.

In the �rst two cases, it is appropriate to time-share the workstation with another

user. Furthermore, it is possible to make the distributed computation transparent to

the regular user of the workstation by assigning a low runtime priority to the parallel

processes (UNIX command \nice"). Because the regular user's tasks run at normal

priority, they receive the full attention of the processor immediately, and there is no

loss of interactiveness. After the user's tasks are serviced, there are enough CPU

cycles left for the distributed computation.

In the third case, when a workstation is running another full-time process in ad-

dition to a parallel subprocess, the parallel process must migrate to a new host that

is free. This is because the parallel process interferes with the regular user, and fur-

ther, the whole distributed computation slows down because of the busy workstation.

Clearly, such a situation must be avoided.

The parallel system detects the need for migration using the monitoring program

described in the previous section. The monitoring program checks the CPU load

of every workstation via the UNIX command \uptime", and signals a request for

migration if the �ve-minute-average load exceeds a pre-set value, typically 1.5. The

intent is to migrate only if a second full-time process is running on the same host, and

to avoid migrating too often. In the present system, there is typically one migration

every 45 minutes for a distributed computation that uses 20 workstations from a pool
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of 25 workstations. Also, each migration lasts about 30 seconds. Thus, the cost of

migration is insigni�cant because the migrations do not happen too often.

During a migration, a precise sequence of events takes place in order for the

migration to complete successfully,

� The a�ected process A receives a signal to migrate.

� All the processes get synchronized.

� Process A saves its state into a dump �le, and stops running.

� Process A is restarted on a free host, and the distributed computation continues.

Signals for migration are sent through an interrupt mechanism, \kill -USR2" (see

UNIXmanual). In this way, both the regular user of a workstation and the monitoring

program can request a parallel subprocess to migrate at any time.

The reason for synchronizing all the processes prior to migration, is to simplify

the restarting of the processes after the migration has completed. In addition, the

synchronization allows more than one process to migrate at the same time if it is

desired. A synchronization scheme is employed which instructs all the processes to

continue running until a chosen synchronization time step, and then to pause for the

migration to take place. The details of the synchronization scheme are described in

the appendix.

When all the processes reach the synchronization time step, the processes that

need to migrate save their state and exit, while they notify the monitoring program

to select free workstations for them. The other parallel processes suspend execution

and close their TCP/IP communication channels. When the monitoring program

�nds free hosts for all the migrating processes, it sends a CONT signal to the waiting

processes. In response, all the processes re-open their communication channels, and

the distributed computation continues normally.

Overall, the migration mechanism is designed to be as simple as possible. In fact,

it is equivalent to stopping the computation, saving the entire state on disk, and then
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restarting; except, only the state of the migrating process is saved on disk. In contrast

to this simple migration mechanism, the migration of processes is a challenging task in

a general computing environment such as a distributed operating system [16]. In the

present system, the migration task has been simpli�ed because the parallel processes

have been designed appropriately to accommodate migration easily.

6.5.2 Sharing the network and �le server

A related issue to sharing the workstations with other users, is the sharing of the

network and the �le server. A distributed program must be carefully designed to

make sure that the system does not monopolize the network and the �le server.

Abuse of shared resources is very easy in today's UNIX operating system because

there are no direct mechanisms for controlling or limiting the use of shared resources.

Thus, a program such as FTP (�le transfer) is free to send many megabytes of data

through the network, and to monopolize the network, so that the network appears

\frozen" to other users. A distributed program can monopolize the network in a

similar way, if it is not designed carefully.

The present parallel distributed system does not monopolize the network because

it includes a time delay between successive send-operations, during which the parallel

processes are calculating locally. Moreover, the time delay increases with the network

tra�c because the parallel processes must wait to receive data before they can start

the next integration step. Thus, there is an automatic feedback mechanism that slows

down the distributed computation, and allows other users to access the network at

the same time.

Another situation to consider is when the parallel processes are writing data to

the common �le system. Speci�cally, when all the parallel processes save their state

on disk at approximately the same time (a couple of megabytes per process), it is

very easy to saturate both the network and the �le server. In order to avoid this

situation, a constraint is imposed that the parallel processes must save their state
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one after the other in an orderly fashion, allowing su�cient time gaps between, so

that other programs can use the network and the �le system. Thus, a saving operation

that would take 30 seconds and monopolize the shared resources, now takes 60 � 90

seconds but leaves free time slots for other programs to access the shared resources

at the same time. Overall, a careful design has made the distributed system mostly

transparent to the regular users of the workstations.

6.6 Fluid dynamics

Having described the basic operation of the distributed system, I now discuss the

parallelization of two numerical methods for simulating 
uid dynamics: the explicit

�nite di�erence method, and the lattice Boltzmann method. Both of these methods

are explicit, and are well-suited for simulating subsonic 
ow which involves both

hydrodynamics and acoustic waves. Further, both methods are well-suited for parallel

computing because they employ local interactions.

The explicit �nite di�erence method is described in detail in chapter 3, and is a

straightforward discretization of the Navier Stokes equations. Speci�cally, the spatial

derivatives are discretized using centered di�erences on a uniform orthogonal grid, and

the time derivatives are discretized using forward Euler di�erences. For the purpose

of improving numerical stability, the density equation is updated using the values of

velocity at time t+�t. In other words, the velocities values are computed �rst, and

then the density values are computed as a separate step. The precise sequence of

computational steps for the �nite di�erence method is as follows,

� Calculate Vx; Vy (inner)

� Communicate: send/recv Vx; Vy (boundary)

� Calculate � (inner)

� Communicate: send/recv � (boundary)
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� Filter �; Vx; Vy (inner)

The �lter that is included above is crucial for simulating subsonic 
ow at high

Reynolds number (fast moving 
ow). The simulation of subsonic compressible 
ow

is susceptible to slow-growing numerical oscillations. The �lter prevents instabilities

by dissipating high spatial frequencies whose wavelength is comparable to the grid

mesh size (the distance between neighboring 
uid nodes). The same �lter is used

both with the �nite di�erence method and with the lattice Boltzmann method. A

detailed description of the �lter can be found in chapter 5.

We recall from chapter 4 that the lattice Boltzmann method uses two kinds of

variables to represent the 
uid, the traditional 
uid variables �; Vx; Vy, and another

set of variables called populations Fi. During each cycle of the computation, the 
uid

variables �; Vx; Vy are computed from the Fi, and then the �; Vx; Vy are used to relax

the Fi. Subsequently, the relaxed populations are shifted to the nearest neighbors of

each 
uid node, and the cycle repeats. The precise sequence of computational steps

for the lattice Boltzmann method is as follows,

� Relax Fi (inner)

� Shift Fi (inner)

� Communicate: send/recv Fi (boundary)

� Calculate �; Vx; Vy from Fi (inner)

� Filter �; Vx; Vy (inner)

Regarding the communication of boundary values by the �nite di�erence method

(FD) and the lattice Boltzmann method (LB), there are some di�erences that will

become important in the next two sections, when the performance of the parallel

simulation system is examined. The �rst di�erence is that FD sends two messages

per computational cycle as opposed to LB which sends all the boundary data in
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Figure 6-5: Parallel e�ciency in 2D simulations using lattice Boltzmann.

one message. This results in slower communication for FD when the messages are

small because each message has a signi�cant overhead in a local-area network. The

second di�erence is that LB communicates 5 variables (double precision 
oating-point

numbers) per 
uid node in three dimensional problems, while FD communicates only

4 variables per 
uid node. In two dimensional problems, both methods communicate

3 variables per 
uid node.

6.7 Experimental measurements of performance

The performance of the parallel simulation system has been measured when using the

�nite di�erence method and the lattice Boltzmann method to simulate a well-known

problem in 
uid mechanics, Hagen-Poiseuille 
ow through a rectangular channel (Sko-

rdos [48] and Landau&Lifshitz [32, p.51]). Below, measurements of the parallel e�-

ciency f and the speedup S are presented. These numbers are de�ned as follows,

f =
S

P
=

T1

P Tp
(6.1)
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Figure 6-6: Parallel speedup in 2D simulations using lattice Boltzmann.

where Tp is the elapsed time for integrating a problem using P processors, and T1 is

the elapsed time for integrating the same problem using a single processor. The times

Tp and T1 for integrating a problem are measured by averaging over 20 consecutive

integration steps, and also by averaging over each processor that participates in the

parallel computation. The resulting average is the time interval it takes to perform

one integration step. The UNIX system call \gettimeofday" is used to obtain accurate

timings. Although most measurements are taken during the night, the workstations

are usually busy during the night as well as during the day. To avoid situations

where the Ethernet network is overloaded by a large FTP or something else, each

measurement is repeated twice, and the best performance is selected.

Twenty-�ve HP9000/700 workstations are used which are connected together by a

shared-bus Ethernet network. Sixteen of the workstations are 715/50 models, six are

720 models, and three are 710 models. The 715/50 workstations are based on a Risk

processor running at 50 MHz, and have an estimated performance of 62 MIPS and

13 MFLOPS, while the 720 and 710 workstations have a slightly lower performance.

For analysis purposes, we de�ne the speed of a workstation as the number of 
uid
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Figure 6-7: Parallel e�ciency in 2D simulations using �nite di�erences.

nodes integrated per second, where the number of 
uid nodes does not include the

padded areas discussed in section 6.4.2. The table below presents the speed of the

workstations for 2D and 3D simulations using the lattice Boltzmannmethod (LB) and

the �nite di�erence method (FD). These numbers have been calculated by averaging

over simulations of di�erent size grids that range from 1002 to 3002 
uid nodes in

2D, and from 103 to 443 in 3D. Also, the speeds have been normalized relative to the

speed of the 715/50 workstation,

715=50 710 720

LB 2D 1:0 � :04 :84 � :02 :86� :08

LB 3D :51 � :01 :40 � :01 :42� :02

FD 2D 1:24 � :1 1:08 � :1 1:17� :1

FD 3D 1:0� :1 :85� :1 :94� :1

The relative speed of 1:0 corresponds to 39132 
uid nodes integrated per second.

In the graphs of parallel speedup and e�ciency, I use the 715/50 workstation

to represent the single processor performance. I do not use the performance of the

slowest workstation (the 710 model) for normalization purposes because it would
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Figure 6-8: Parallel speedup in 2D simulations using �nite di�erences.

over-estimate the performance of the system. In particular, most of the workstations

are 715 models, and the strategy is to choose 715 models �rst before choosing the

slightly slower 710 and 720 models. I have tested that the speedup achieved by sixteen

workstations, which are all 715 models, does not change if one or two workstations

are replaced with 710 models. Thus, it makes sense to normalize the results using the

performance of the 715 model.

Figure 6-5 shows the e�ciency as a function of grain size for (2 � 2), (3 � 3),

(4�4), and (5�4) decompositions (triangles, crosses, squares, circles). The horizontal

axis plots the square root of number of nodes N of each subregion. We see that

good performance is achieved in two-dimensional simulations when the subregion per

processor is larger than 1002 
uid nodes. In the next section, a theoretical model of

parallel e�ciency is presented which predicts very accurately the experimental results

shown in �gure 6-5 and in the other �gures also. Figure 6-6 shows the speedup for

the lattice Boltzmann method (LB), and �gures 6-7 and 6-8 show the e�ciency and

speedup for the �nite di�erence method (FD).

We notice one di�erence between the FD and LB e�ciency curves: the e�ciency
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Figure 6-9: The Ethernet network performs well for 2D simulations (triangles), but

poorly for 3D simulations (crosses).

decreases more rapidly for FD than LB as the subregion per processor decreases.

To understand this di�erence, we quote a general formula for the parallel e�ciency,

which is derived in the next section (see equation 6.8),

f =

�
1 +

Tcom

Tcalc

��1
(6.2)

where Tcom and Tcalc are the communication and the computation time it takes to

perform one integration step. We observe that Tcalc is smaller for FD than LB (see the

table of speeds earlier), and moreover that Tcom becomes larger for FD than LB as the

subregion per processor decreases. The latter is true because each message in a local-

area network incurs an overhead, and FD communicates two messages per integration

step as opposed to LB which communicates only one message per integration step (see

end of section 6.6). Because of these di�erences between FD and LB, the e�ciency

decreases more rapidly for FD than LB as the subregion per processor decreases.

Next, we compare the e�ciency of three-dimensional simulations versus two-

dimensional ones. Figure 6-9 plots the e�ciency of 2D and 3D simulations as a

function of the number of processors P . Here, a problem is simulated which grows
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Figure 6-10: Parallel e�ciency in 3D simulations using the lattice Boltzmannmethod.

linearly with the number of processors P , and is decomposed as (P �1) in 2D, and as

(P � 1� 1) in 3D. The subregion per processor is held �xed at 1202 nodes in 2D, and

253 nodes in 3D, which are comparable sizes, equal to about 14; 500 
uid nodes per

processor. We see that the e�ciency remains high in 2D (triangles), and decreases

quickly in 3D (crosses) as the number of processors increases. This is because the

total tra�c through the shared-bus network increases in proportion to the number

of processors, and this a�ects Tcom in equation 6.2 as explained in more detail in the

next section. Also, we note that 3D requires much more data to be communicated

per step than 2D. Thus, Tcom increases faster for 3D than 2D, and the e�ciency drops

faster in the case of 3D simulations.

Another way of examining the e�ciency of 3D simulations is shown in �gures 6-10

and 6-11. Figure 6-10 plots the e�ciency against the size of the subregion for di�erent

decompositions (2 � 2� 2), (3� 2 � 2), etc. We can see that the e�ciency is rather

poor. Figure 6-11 plots the speedup against the total size of the problem. We can see

that the speedup does not improve when �ner decompositions are employed because

the network is the bottleneck of the computation.
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Figure 6-11: Parallel speedup in 3D simulations using the lattice Boltzmann method.

The results shown in �gures 6-10 and 6-11 have been obtained using the lattice

Boltzmann method. The parallel e�ciency of the �nite di�erence method (FD) in 3D

simulations is even worse than the lattice Boltzmann method (LB), and is not shown

here. The FD e�ciency is worse than LB because the FD computes twice as fast as

LB per integration step (see earlier table of speeds), which makes the ratio Tcom=Tcalc

larger for FD than LB, and leads to lower e�ciency according to equation 6.2.

Another point is that the low e�ciency of 3D simulations is accompanied by fre-

quent network errors because of excessive network tra�c. In particular, the TCP/IP

protocol fails to deliver messages after excessive retransmissions. Both the low e�-

ciency, and the network errors indicate the need for a faster network, or dedicated

connections between neighboring processors in order to perform 3D simulations e�-

ciently.
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6.8 Theoretical analysis of parallel e�ciency

In order to understand better the experimental results of the previous section, we

discuss here a theoretical model of the parallel e�ciency of local-interaction problems.

In particular, we derive a formula for the parallel e�ciency in terms of the parallel

grain size (the size of the subregion that is assigned to each processor), the speed

of the processors, and the speed of the communication network. The analysis is

based on two assumptions: (i) the computation is completely parallelizable, and

(ii) the communication does not overlap in time with the computation. The �rst

assumption is valid for local-interaction problems, and the second assumption is valid

for the present distributed system. The extension of the analysis to situations where

communication and computation overlap in time is straightforward as we shall see

afterwards.

We �rst examine the relationship between the e�ciency and the processor utiliza-

tion. We de�ne the e�ciency f as the speedup S divided by the number of processors

P . Further, we de�ne the speedup S as the ratio T1=Tp of the total time it takes to

solve a problem using one processor, denoted T1, divided by the total time it takes to

solve the same problem using P processors, denoted Tp. In other words, we have the

following expression,

f =
S

P
=

T1

P Tp
(6.3)

We de�ne the processor utilization g as the fraction of time spent for computing, de-

noted Tcalc, divided by the total time spent for solving a problem which includes both

computing and waiting for communication to complete. Also, we use the simplifying

assumption that the communication and the computation do not overlap in time, so

that we de�ne Tcom as the time spent for communication without any computation

occurring during this time. Thus, we have the following expression,

g =
Tcalc

Tcalc + Tcom
=

�
1 +

Tcom

Tcalc

��1
(6.4)

To compare f and g, we note that the values of both f and g range between the
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following limits,

0 � g � 1

0 � f � 1
(6.5)

for the worst case and the best case respectively. We expect that high utilization g

corresponds to high parallel e�ciency f . However, this depends on the problem that

we are trying to compute in parallel.

In the special case of a problem that is completely parallelizable, the processor

utilization g is exactly equal to the parallel e�ciency f . To show this, we use the

following relation as the de�nition of a problem being completely parallelizable,

Tcalc =
T1

P
(6.6)

Then, we also use the assumption that communication and computation do not over-

lap in time, so that we can obtain a second relation,

(Tcalc + Tcom) = Tp (6.7)

By substituting equations 6.6 and 6.7 into equation 6.3, and comparing with equa-

tion 6.4, we arrive at the desired result that the parallel e�ciency is exactly equal to

the processor utilization,

f = g =
�
1 +

Tcom

Tcalc

��1
(6.8)

The above equation has been derived under the assumption that communication and

computation do not overlap in time. If this assumption is violated in a practical

situation, then the communication time Tcom should be replaced with a smaller time

interval, the e�ective communication time. This modi�cation does not change the

conclusion f = g, it simply gives higher values of e�ciency and utilization.

To proceed further, we need to �nd how the ratio Tcom=Tcalc depends on the size of

the subregion. First, we observe that Tcalc is proportional to the size of the subregion.

If N is the size of the subregion (the number of parallel nodes that constitute one
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subregion), we can write,

Tcalc =
N

Ucalc
(6.9)

where Ucalc is a constant, the computational speed of the processors for the speci�c

problem at hand. In a similar way, we seek to �nd a formula for the communication

time Tcom in terms of the size of the subregion that is assigned to each processor. As

a �rst model, we write the following simple expression,

Tcom =
Nc

Ucom
(6.10)

where Nc is the number of communicating nodes in each subregion, namely the outer

surface of each subregion. The factor Ucom represents the speed of the communication

network.

For analysis purposes, we want to know exactly how Nc varies with the size of the

subregion N . We consider the geometry of a subregion in two dimensions. We can see

that the boundary of a subregion is one power smaller than the volume expressed in

terms of the number of nodes. For example, if we consider square subregions of size

L2 nodes, the enclosing boundary contains 4L nodes, and the ratio of communicating

nodes to the total number of nodes per subregion can be as large as 4=L. In general,

we have the following relations,

Nc = mN1=2 (6.11)

Nc = mN2=3 (6.12)

in two and three dimensions respectively, where the constant m depends on the geom-

etry of the decomposition. For example, if the decomposition of a problem is (P �1),

then m = 2 because each subregion communicates with its left and right neighbors

only. The following table gives m for a few decompositions which are used in the

performance measurements of section 6.7,

P � 1 2� 2 3 � 3 4 � 4 5� 4

m 2 2 3 4 4
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If we introduce the above formulas for Nc and m into equation 6.8, we obtain the

following expressions for the parallel e�ciency of a local-interaction problem in two

and three dimensions respectively,

f =

�
1 + N�1=2 mUcalc

Ucom

��1
(6.13)

f =

�
1 + N�1=3 mUcalc

Ucom

��1
(6.14)

The above equations show that if N is su�ciently large compared to the term

mUcom=Ucalc, then high parallel e�ciency can be achieved.

A few comments are in order. First, we must remember that in practice we can

not increase arbitrarily the size of the subregion per processor in order to achieve

high e�ciency. This is because the computation may take too long to complete,

and because the memory of each workstation is limited. In the present system, each

workstation has maximum memory 32 megabytes, and a large part of this memory

is taken by other programs, and other users. A practical upper limit of how much

memory can be used per workstation is 15 megabytes, which corresponds to 3002 
uid

nodes in 2D simulations and 403 
uid nodes in 3D simulations.

In 2D simulations, the upper limit of 3002 
uid nodes per subregion is large enough

to achieve high e�ciency. As we saw in �gure 6-5, high e�ciency is achieved when

the subregion per processor is larger than 1002 
uid nodes. By contrast, in 3D

simulations the upper limit of 403 
uid nodes per subregion is too small to achieve

high e�ciency. Further, the e�ciency depends on the size of the subregion as N�1=3

in 3D versus N�1=2 in 2D, as can be seen from equations 6.13 and 6.14. This means

that the size of the subregion N must increase much faster in 3D than in 2D to achieve

similar improvements in e�ciency. Because of this fact, achieving high e�ciency in

3D simulations is much more di�cult than in 2D simulations.

Having described the basics of the model of parallel e�ciency, we now discuss a

small improvement of the model. We observe that in the case of a shared-bus network

the communication time Tcom must depend on the number of processors that are using
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Figure 6-12: Theoretical model of parallel e�ciency for two-dimensional subregions

of size N .

the network. In particular, if we assume that all the processors access the shared-bus

network at the same time, then the communication time Tcom must increase linearly

with the number of processors. Based on this assumption, we rewrite equation 6.10

for Tcom as follows,

Tcom =
mN1=2 (P � 1)

Vcom
(6.15)

for the case of two dimensional problems. The constant Vcom is the speed of com-

munication when there are only two processors sharing the network. Using the new

expression for Tcom, the equation of parallel e�ciency in two dimensions becomes as

follows,

f =

�
1 + N�1=2 (P � 1)

mUcalc

Vcom

��1
(6.16)

Below, this model is tested by comparing the e�ciency which is predicted by the

model against the experimentally measured e�ciency of section 6.7.

Figure 6-12 plots the e�ciency f versus N1=2 according to formula 6.16, using

Ucalc=Vcom = 2=3. The four curves marked with triangle, cross, square, circle cor-

respond to di�erent numbers of processors P = 4; 9; 16; 20 and also di�erent values
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Figure 6-13: Theoretical model of parallel e�ciency which assumes that the commu-

nication time increases linearly with the number of processors.

of m = 2; 3; 4; 4 which depends on the geometry of the decomposition as explained

earlier. A comparison between the predicted e�ciency shown in �gure 6-12 and the

experimentally measured e�ciency shown in �gure 6-5 reveals good agreement when

the subregion per processor is larger than N > 1002. However, for small subregions,

N < 1002, the predicted e�ciency is too high compared to the experimental e�-

ciency. The reason for this is that messages in a local-area network have a large

overhead which becomes important when the messages are small, namely, when the

subregion per processor is smaller than N < 1002 
uid nodes. The overhead of small

messages leads to a smaller communication speed Vcom, and a corresponding decrease

of e�ciency f . We have not attempted to model the overhead of small messages here.

Another way of examining the validity of equation equation 6.16 is to plot the

e�ciency f versus the number of processors P while keeping all other parameters

constant. In �gure 6-13, the e�ciency of 2D simulations is plotted according to

equation 6.16 using N = 1252. We set Ucalc=Vcom = 2=3 as we did in �gure 6-12, and

we set m = 2 because each subregion communicates with its left and right neighbors

only. For comparison purposes, the e�ciency of 3D simulations is also plotted, using
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N = 253 and m = 2. The computational speed is half as large in 3D than in 2D,

and the communication of each 
uid node in 3D requires 5=3 as much data as in

2D. Taking these numbers into account, we can write the following expression for the

parallel e�ciency of 3D simulations,

f =

�
1 +

5

6
N�1=3 (P � 1)

mUcalc

Vcom

��1
(6.17)

where the factor 5=6 arises because the 2D values of Ucalc and Vcom are used which

give Ucalc=Vcom = 2=3.

If we compare the predicted e�ciency shown in �gure 6-13 against the experimen-

tally measured e�ciency shown in �gure 6-9, we can see that there is good agreement.

Also, the overhead of small messages, mentioned earlier, does not a�ect the predicted

e�ciency in this case because the subregion per processor is large, N = 1252 in

2D, and 253 in 3D. Overall, there is reasonable agreement between the theoretical

model and the experimental measurements of parallel e�ciency. The model can be

improved further, if desired, by employing more sophisticated expressions for the com-

munication time Tcom in equation 6.15 which describes the behavior of the shared-bus

Ethernet network.

6.9 Conclusion

An e�ective approach of simulating 
uid dynamics on a cluster of non-dedicated

workstations has been presented. The approach is particularly good for simulating

subsonic 
ows which involve both hydrodynamics and acoustic waves. A parallel

simulation system has been developed and applied to solve a real problem, the direct

simulation of 
ue pipes of wind musical instruments.

The system achieves concurrency by decomposing the 
ow problem into subre-

gions, and by assigning the subregions to parallel processes. The use of explicit

numerical methods leads to minimum communication requirements. The parallel

processes automatically migrate from busy hosts to free hosts in order to exploit
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the unused cycles of non-dedicated workstations, and to avoid disturbing the regular

users. Typical simulations achieve 80% parallel e�ciency (speedup/processors) using

20 HP-Apollo workstations.

Detailed measurements of the parallel e�ciency of 2D and 3D simulations have

been presented, and a theoretical model of e�ciency has been developed which �ts

closely the measurements. The measurements show that a shared-bus Ethernet

network with 10Mbps peak bandwidth (megabits per second) is su�cient for two-

dimensional simulations of subsonic 
ow, but is limited for three-dimensional simu-

lations. It is expected that the use of new technologies in the near future such as

Ethernet switches, FDDI and ATM networks will make practical three-dimensional

simulations of subsonic 
ow on a cluster of workstations.

6.10 Appendix

The appendix describes certain aspects of the distributed system that are not vital

for a general reading, but are useful to someone who is interested in implementing a

distributed system similar to the present one.

6.10.1 Synchronization issues

The synchronization between distributed processes (see section 6.4.2) can be violated

in situations such as the following. Let us suppose that process A stops execution

after communicating its data for integration step N . The nearest neighbor B can

integrate up to step N + 1 and then stop. Process B can not integrate any further

without receiving data for integration step N +1 from process A. However, the next

to nearest neighbor can integrate up to step N + 2, and so on. If we consider a two-

dimensional decomposition (J�K) of a problem, the largest di�erence in integration

step between two processes is �N ,

�N = max(J;K)� 1 (6.18)
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assuming that neighbors depend on each other along the diagonal direction (this

corresponds to a full stencil of local interactions as shown in �gure 6-4). If neighbors

depend on each other along the horizontal and vertical directions only (this is the

star stencil of �gure 6-4), then the largest di�erence in integration step between two

processes becomes,

�N = (J � 1) + (K � 1) (6.19)

These worst cases of un-synchronization are important during the migration of pro-

cesses because a precise global synchronization is required then, as explained in sec-

tion 6.5.

The synchronization algorithm that is used during process migration is as follows.

First, we send a synchronization request to all the processes by means of a UNIX

interrupt. In response to the request, every process writes the current integration

time step into a shared �le (using �le locking semaphores, and append mode). Then,

every process examines the shared �le to �nd the largest integration time step Tmax

among all the processes. Further, every process chooses (Tmax+1) to be the upcoming

synchronization time step, and continues running until it reaches this time step. It

is important that all the processes can reach the synchronization time step, and that

no process continues past the synchronization time step.

The above algorithm �nds the smallest synchronization time step that is possible

at any given time, so that a pending migration can take place as soon as possible.

6.10.2 Alternative communication mechanisms

A minor e�ciency issue with regard to TCP/IP communication (see section 6.4.2)

is the order in which the neighboring processes communicate with each other. One

way is for each parallel process to communicate with its neighbors on a �rst-come-

�rst-served basis. An alternative way is to impose a strict ordering on the way the

processes communicate with each other. For example, we consider a one-dimensional

decomposition (J � 1) of a problem with non-periodic outer-boundaries where each
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process receives data from its left neighbor before it can send data to its right neighbor.

Then, the leftmost process No. 1 will access the network �rst, and the nearest-neighbor

process No. 2 will access the network second, and so on. The intent of such ordering

is to pipeline the messages through the shared-bus network in a strict fashion in an

attempt to improve performance. However, it does not work very well if one process is

delayed because all the other processes are delayed also. Small delays are inevitable in

time-sharing UNIX systems, and strict ordering ampli�es them to global delays. By

contrast, asynchronous �rst-come-�rst-served communication allows the computation

to proceed in those processes that are not delayed, and better performance is achieved

overall. In the parallel system, �rst-come-�rst-served communication is implemented

using the \select" system call of sockets (see UNIX manual).

Regarding the choice of communication protocol, the TCP/IP protocol is used

because it is very simple as explained in section 6.4.2. Apart from the TCP/IP

protocol, another protocol that is popular in distributed systems is the UDP/IP

protocol, also known as datagrams. The UDP/IP protocol is similar to TCP/IP

with one major di�erence: There is no guaranteed delivery of messages. Thus, the

distributed program must check that messages are delivered, and resend messages if

necessary, which is a considerable e�ort. However, the bene�t is that the distributed

program has more control of the communication. For example, a distributed program

could take advantage of knowing the special properties of its own communication

to achieve better results than the TCP/IP standard. Also, another advantage is

robustness in the case of network errors that occur under very high network tra�c.

For example, when TCP/IP fails, it is hard to know which messages need to be resent.

In UDP/IP the distributed program controls precisely which data is sent and when,

so that the failure problem is handled directly. Despite these advantages of UDP/IP

over TCP/IP, I have chosen to work with TCP/IP because of its simplicity.
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6.10.3 Performance bugs to avoid

In section 6.7, we examined the performance of the HP-Apollo workstations. It should

be noted that the performance of the HP9000/700 Apollo workstations can degrade

dramatically at certain grid sizes by a factor of two or more, but there is an easy way

to �x the problem. The loss of performance occurs when the length of the arrays in

the program is a near multiple of 4096 bytes which is also the virtual-memory page

size. This suggests that the loss of performance is related to the prefetching algorithm

of the CPU cache of the HP9000/700 computers. To avoid the loss of performance,

the arrays can be lengthened with 200-300 bytes when their length is a near multiple

of 4096. This modi�cation eliminates the loss of performance.

Another problem that can lead to loss of performance is the handling of 
oating-

point exceptions. When an under
ow exception occurs, the HP9000/700 workstations

trap into the system kernel by default, and this causes considerable slow-down. The

slow-down is ampli�ed in a distributed computation because if one processor slows

down, all the processors slow down. A particular situation in 
uid dynamics occurs

when the passage of an acoustic wave causes under
ow exceptions to di�erent proces-

sors at di�erent times. Then, during the passage of the acoustic disturbance, all the

processors are delayed. Such problems can be observed at the beginning of the sim-

ulation when the 
uid begins to move from an initial non-moving state (namely, the

density variations of the 
uid are equal exactly to zero at startup). Fortunately, there

is a simple solution which is to avoid initializing the 
uid density variations equal to

exact zero; for example, an initial density gradient with relative size 10�10 is practi-

cally the same as zero in the present situation. Such a non-zero initialization avoids

the 
oating-point under
ow. Another solution which is available in the HP9000/715

workstation models but not in the 720 models, is to set \fast under
ow mode" using

the system call \fpsetfastmode" of HPUX. Fastmode causes the hardware to simply

substitute a zero for the result of an operation that under
ows, without a system

fault and without any delay.
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Figure 6-14: Communication of data across boundaries (dashed lines) for the �nite
di�erence method.

6.10.4 Communication of 
uid 
ow boundaries

In section 6.6, the parallelization of explicit numerical methods for 
uid dynamics

was discussed. Here, the precise manner in which the 
uid 
ow boundaries are com-

municated between the parallel processes is described. The �nite di�erence method

communicates the 
uid variables (�; Vx; Vy) in 2D, and (�; Vx; Vy; Vz) in 3D. The lat-

tice Boltzmannmethod communicates the moving populations Fi that must be shifted

across a boundary. There are 3 moving populations Fi in each direction in 2D, and 5

moving populations Fi in each direction in 3D.

Figures 6-14 and 6-15 show how the boundary values are communicated along the

x and y directions. In the case of the �nite di�erence method (�gure 6-14), the values

on the inner nodes next to the padded area of region A are copied onto the padded area

of region B. In the case of the lattice Boltzmannmethod (�gure 6-15) the values on the

padded area of region A are copied onto the inner nodes of region B. The di�erences
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Figure 6-15: Communication of data across boundaries (dashed lines) for the lattice
Boltzmann method.

in data movement are due to the fact that the �nite di�erence method communicates

the 
uid variables �; Vx; Vy, while the lattice Boltzmann method communicates the

moving populations Fi. The moving populations Fi are shifted to the padded areas

prior to the communication operations.

The corner nodes of each rectangular region need special attention because they

connect regions diagonally (for example, regions A and C in �gure 6-14). A simple way

of handling diagonal connections is to communicate along the x-direction �rst, then

along the y-direction, then along the z-direction. Thus, the diagonal corner values

are updated correctly at the expense of constraining the order of communication.

The lattice Boltzmann method obeys this constraint. The �nite di�erence method

however does not obey this constraint, and it ignores the corner points. This is a

special case because in the present simulations the di�erencing stencils are cross-

shaped without diagonals. This is exploited so that the communication operations of
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the �nite di�erence method take place in any order between the x,y,z directions, and

there are no diagonal dependencies.



Chapter 7

Music by 
ue pipes

First, I review 
ow-generated sound phenomena in general, and then I focus on sim-

ulations of 
ue pipes. The results presented here are a continuation of the computer

simulations and physical measurements already described in chapter 1.

7.1 Background

7.1.1 Related computational work

Related work on simulating 
ow-generated sound phenomena has been limited, and

all of the previous studies have employed incompressible 
ow equations as far as

I know. For example, Ohring [35] has simulated jets of air impinging on a sharp

triangular wedge using an incompressible 
ow calculation. Peters [37] has employed

vortex methods to simulate the initial stages of blowing air through a 
ue channel

and also the 
ow of gas through industrial pipe systems. Harding [24] has used

an incompressible 
ow calculation as a source term to a wave equation in order to

study the sound generated by an obstruction inside a channel. As explained earlier in

chapter 1, Harding's approach applies only when the acoustic waves do not interact

with the hydrodynamic 
ow. In the case of 
ue pipes, acoustics and hydrodynamics

must be simulated together using the compressible Navier Stokes equations.

215
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7.1.2 Catalogue of 
ow-generated sound phenomena

There is a very wide variety of sound phenomena which are triggered and sustained

by the 
ow of air (or any 
uid medium) and the interaction between the 
ow and

solid obstacles. The following are some well-known examples.

� Flue pipes exploit the oscillations of narrow jets of air that impinge a sharp

obstacle called the labium. The operation of 
ue pipes depends on the cou-

pling between acoustic and hydrodynamic oscillations. Flue-based musical in-

struments include the baroque recorders, the 
utes, the organ pipes found in

cathedrals, the pipes used by Latin America cultures, the pan-pipes of ancient

Greece, and the bamboo 
utes found in many Pharaoh's tombs inside Egyptian

pyramids.

� A Helmholtz resonator (a glass bottle) can be used in the place of a long pipe.

Blowing a narrow jet of air over the opening of a bottle generates pure tones of

a de�nite frequency.

� The sound generated by swinging around a plastic tube with a diameter of 1�5

cm (children often do this) is probably similar to blowing air over a pipe or a

bottle. An observer that stays with the moving tube sees the air rushing over

the opening of the tube. The layer of air (boundary layer) next to the opening

of the tube is very unstable, and can easily start oscillating near the resonant

acoustic frequencies of the pipe.

� Whistles are close relatives to 
ue pipes. For instance, in human whistling,

the teeth and the tongue are used to form a narrow jet of air. The jet of air

is blown against an obstruction of appropriate shape (the lips). The mouth

probably acts as a resonator in this case.

� Another type of whistling (lower frequency than lip-whistling) is possible by

putting one's hands together to form a cavity with a narrow opening between
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the two thumbs, and by blowing a narrow jet of air (using one's lips and teeth)

tangentially onto the opening between the two thumbs. The thumb-nails should

be positioned below one's nose in order to blow air tangentially onto the opening

between the thumbs. If this has not been done before, it takes some experimen-

tation at �rst to get it right.

� Besides 
ue pipes and whistles, another 
ow-generated sound phenomenon is

the Aeolian tone. An Aeolian tone is generated when a stream of air 
ows

around a narrow obstacle, such as a wire or a cylinder. The stream of air may

be wide, or it may be very narrow so that it can be viewed as a jet of air.

Morse&Ingard [33, p.751] provide experimental formulas for the frequencies of

Aeolian tones as a function of air speed and wire diameter. A related musical

instrument is the Aeolian harp which consists of a set of strings that vibrate

when the air is blown against them.

� In sound phenomena such as Aeolian tones, the acoustic and the hydrodynamic

oscillations of the air typically trigger vibrations of the wire so that there is a

coupling between acoustic, hydrodynamic, and solid-obstacle oscillations. This

coupling ampli�es the resonant frequencies of the wire, and sometimes it even

leads to disaster when there is not su�cient damping of the solid-object vibra-

tions. The collapse of the Tacoma bridge and the collapse of industrial chimneys

(Tritton [54, p.444]) are famous examples.

� Reed musical instruments such as the clarinet and the harmonica also exploit

the vibrations of solid obstacles. It should be noted however that a vibrating

reed is somewhat di�erent from a vibrating wire because the reed vibrations

open and close periodically a narrow opening through which the air passes.

The above catalogue describes some representative examples of 
ow-generated

sound phenomena. Many other possibilities and variations of the above are certainly

possible. Below, the operation of 
ue pipes is considered further.
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7.2 The operation of 
ue pipes

The operation of 
ue pipes has been studied for hundreds of years. Considerable

progress has been made, but important basic questions remain unanswered. For

example, a most basic question is whether a given geometry (
ue channel, labium,

and pipe) will produce audible tones. Anyone who has experimented with building

new kinds of 
ue pipes knows very well that small changes in the geometry can make

a 
ue pipe sing, make no sound at all, or make a very mediocre sound (noisy, hissing,

or including intermittent vibrations and beats). Presently, the existing theories of


ue pipes can not answer questions such as whether a given 
ue pipe will sing or not.

The existing theories of 
ue pipes try to reduce the complexities of the 
uid

dynamics inside a 
ue pipe to a system of lumped components such as oscillators (in-

ductors, capacitors), dampers, and ampli�ers. Such a reduction introduces a number

of parameters which are adjusted to �t the observed results of a particular 
ue pipe

(Verge94 [57, 56], Hirschberg [26]). Considerable success has been reported with some

reduced models of 
ue pipes, but the subject still has a long way to go. For example,

the assumptions of the reduced models are not agreed upon by everyone, and they

are not completely understood. Furthermore, �nding reduced models of 
ue pipes is

somewhat of an art. It is not clear what approximations can be made when a new


ue pipe of di�erent geometry is considered.

The details of existing theories of 
ue pipes will not be discussed here. However,

there are a few basic principles that are worth reviewing. First, it is assumed that

there is some kind of feedback between the acoustic waves in the pipe and the jet.

This feedback is responsible for amplifying the acoustic waves under appropriate

conditions. Second, it is recognized that there are, at least, two major types of

feedback: hydrodynamic and acoustic. The hydrodynamic feedback refers to the

interaction between the jet of air and the labium, and includes the shedding of vortices

by the jet, and the local pressure gradients which have an immediate e�ect on the

jet. The acoustic feedback refers to the pressure disturbances (traveling waves) which
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emanate from the jet-labium region, travel down the pipe, re
ect, and return back

to the jet-labium region after a considerable delay. The major distinction between

acoustic and hydrodynamic feedback is the time delay of traveling waves versus the

almost-zero delay of hydrodynamic e�ects.

The distinction between the hydrodynamic and the acoustic feedback is closely re-

lated to the distinction between an \edge tone" and a \pipe tone". The former refers

to the oscillations of a jet impinging a sharp obstacle without any resonant cavity in

the vicinity. The latter, the pipe tone, refers to the normal operation of a 
ue pipe,

where sound is generated by a jet of air impinging a sharp edge near a resonant pipe.

It is clear that in the edge tone there is no re
ection of acoustic waves (no delayed

feedback) which means that the edge tone is a purely hydrodynamic phenomenon by

de�nition. Furthermore, the frequencies of an edge tone are approximately propor-

tional to the blowing speed, and inversely proportional to the distance between the

jet's ori�ce and the obstacle. An experimental formula is as follows (Hirschberg [26,

p.210]),
f W

V
= 0:4 (n + 
) n = 1; 2; : : : (7.1)

where f is the frequency in Hz, V is the mean speed of the jet in cm/s, and 
 is a small

correction 0 � 
 � 0:5. By contrast, the frequencies of a pipe tone do not vary much

with the blowing speed (except for jumping to higher modes), and are determined

mostly by the acoustic feedback and the dimensions of the resonant pipe. As the

blowing speed increases, the pipe-tone frequencies stay approximately �xed until at

some point the frequencies \jump" to higher values which are near higher resonant

modes of the pipe. This is, of course, a simpli�ed picture. In practice, low-frequency

beats, hissing sound, and failure to sing may also occur as the blowing conditions are

varied.

In comparing edge tones and pipe tones, it should be noted that an edge tone often

does not generate enough acoustic energy to be audible. Generally, an edge tone is

weaker than a pipe tone because there is no resonant cavity to amplify the sound. A
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related issue is that when a 
ue pipe stops singing, the jet of air often continues to

oscillate. Perhaps, this is a type of edge tone where the acoustic coupling between

the jet and the resonant cavity fails for some reason, and the hydrodynamic e�ects

play a dominant role in the jet's oscillations, but do not generate enough acoustic

energy to be audible (�gure 7-9 shows a simulation where this phenomenon may be

occurring).

The details of the hydrodynamic and the acoustic feedback are still a subject of

research. A currently popular model of the acoustic feedback is to assume that the

jet behaves as if it were in�nitely long, and that the acoustic waves inside the pipe

perturb the jet as it emerges from the 
ue channel. As the jet undulates, it ampli�es

the perturbations, and returns acoustic energy into the pipe. This model is based on

the work of Rayleigh (J.W. Strutt) on in�nitely long jets. Although there is some

truth to this model, the actual jet inside a 
ue pipe is nothing but in�nite. The jet

is short and rather unpredictable. Sometimes, the jet extends undulating all the way

from the ori�ce to the labium, and other times, the jet breaks well-before reaching

the tip of the labium. Perhaps, di�erent reduced models of the jet are needed to

characterize di�erent behaviors.

Some factors which control the operation of a 
ue pipe, what frequencies are

generated, and how well the 
ue pipe sings are listed below.

� The blowing speed of the jet.

� The initial blow of air into the pipe that triggers the oscillations.

� The ori�ce-to-labium distance.

� The alignment of the labium with the 
ue channel, and also the alignment of

the labium with the resonant pipe.

� The length of the resonant pipe, as well as the width (and depth) of the pipe.
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� The conditions outside the pipe and especially above the labium. For example,

an in�nite region above the labium, stagnant air, and constant ambient pressure

seem to help the operation of the 
ue pipe. By contrast, a limited region

above the labium, accumulation of vorticity, and buildup of pressure gradients

complicate the operation of the 
ue pipe.

The last one of the above conditions has already been mentioned in section 1.4 as a

possible cause for the di�erences between the computer simulations and the physical

measurements of the 20 cm closed-end soprano recorder. Below, the simulation of


ue pipes is discussed further.

7.3 Inlet and outlet boundary conditions

In this section, suitable boundary conditions for modeling the inlet and the outlet in

simulations of 
ue pipes are described. The same approach applies both to the lattice

Boltzmann method and the compressible �nite di�erence method of section 3.3.

The boundary conditions at the inlet and the outlet must ensure that a prescribed


ow of air enters and exits the simulated region. Furthermore, the boundary condi-

tions at the inlet and the outlet must avoid the re
ection of acoustic waves, if possible.

This is an important issue in modeling 
ue pipes because the region above the labium

should approximate as much as possible an in�nite region, not a resonant cavity.

A simple technique for non-re
ecting (absorbing) boundary conditions can be de-

vised as follows. We observe that in compressible 
ow, the propagation of acoustic

waves occurs by interchanging the acoustic energy between two forms, kinetic (veloc-

ity) and potential (density). If either the velocity or the density is \clamped" down

at a point, acoustic re
ection occurs at that point. If both the velocity and the den-

sity are free to vary (as in free space), the acoustic wave propagates freely without

re
ections. If both the velocity and the density are \clamped" down, the acoustic

wave is absorbed, and there are no re
ections.
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The above rules for the re
ection of acoustic waves can be veri�ed by considering

a few simple cases. An example where the velocity is clamped and the density is free,

is a non-slip wall. As a traveling wave reaches the wall, the acoustic velocity must

vanish, which causes the density to build up at the wall, and subsequently creates

a traveling wave in the opposite direction (the re
ection). If the traveling wave is a

pulse of positive density, so is the re
ected wave; in other words, the phase of the

acoustic wave is preserved after a wall re
ection.

By contrast, when the velocity is free and the density is clamped, the phase of

the traveling wave is reversed. An example is the re
ection at the end of an open

pipe; namely, a pipe which opens into in�nite space. In this case, the density is held

approximately constant (ambient atmospheric pressure), and the velocity varies. As

the traveling wave reaches the opening, the density pulse (let us assume a positive

pulse) must vanish, which causes the acoustic velocity to increase further (the po-

tential energy becomes kinetic) until eventually a negative pulse of density is created

which travels backwards (the re
ection).

The above rules describe what happens in the physical world. Similar rules to the

above can be applied in a numerical simulation of compressible 
ow.

20040
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Figure 7-1: Soprano recorder 
ue, 20 cm closed-end pipe. The numbers shown corre-

spond to millimeters. Inlet is at the left, outlet is at the top of the picture.

For example, in the simulation of a closed-end 
ue pipe, both the pressure and
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the velocity are prescribed at the inlet and the outlet so as to avoid the re
ection

of acoustic waves. In particular, the pressure is set equal to zero at the outlet, and

equal to an estimated pressure drop at the inlet. Figure 7-1 shows a typical geometry

of such a 
ue pipe simulation. The inlet is located at the narrow opening of the


ue channel at the left side, and the outlet is located at the top of the picture. It

must be noted that the pressure drop is not known a priori because it depends on

the imposed 
ow of air, and on the dynamical behavior of the system. Thus, the

imposed pressure drop must be an approximation. Such an approach is successful

in preventing the re
ection of acoustic waves, 1 but raises the question whether it is

consistent to specify both the velocity and the pressure at the inlet and the outlet.

To answer the above question, let us consider the case of Hagen-Poiseuille 
ow

through a long pipe. When a pressure drop is imposed between the inlet and the

outlet, a 
ow develops through the pipe. When a 
ow is imposed through the pipe,

a pressure drop develops. When both a 
ow and a pressure drop are imposed, a 
ow

develops which is higher than the imposed 
ow if the imposed pressure drop is an

overestimate of the pressure drop corresponding to the imposed 
ow; and conversely

if the imposed pressure drop is an underestimate. This behavior is easily veri�ed

in simulations of Hagen-Poiseuille 
ow and also in simulations of 
ue pipes using

the lattice Boltzmann and the compressible �nite di�erence method (�gures 7-1A

and 7-1B).

Table 7.1 shows the imposed velocity and the actual 
ow through the 
ue channel

in simulations of the 20 cm closed-end recorder. The pro�le of the imposed velocity is

1Another issue which relates to hydrodynamics as opposed to acoustics is the \re
ection" of

vortices reaching the outlet. In particular, vortices are generated at the labium of the 
ue pipe, and

eventually reach the outlet if the simulation continues long enough. When this happens, the vortices

do not simply cross the outlet and leave the simulated region. Instead, the vortices reach the outlet,

try to leave the simulated region, and then bounce back into the simulated region. The accumulation

of vorticity in the simulated region creates problems because it changes the nature of the problem

being simulated. This issue is avoided in the present simulations by making the simulated region

large enough that the vortices generated at the labium do not reach the outlet during the simulation.

Better boundary conditions or some way to dissipate the vorticity before reaching the outlet, must

be devised in order to continue the simulations inde�nitely.
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Lattice Boltzmann

imposed V 800 1080 1500 1959

actual V 818 1104 1535 1995

Finite Di�erences

imposed V 800 1060 1558 1985

actual V 838 1113 1634 2082

Table 7.1: Imposed velocity and actual 
ow through the 
ue channel in 
ue pipe

simulations. The velocity V is in cm/s.

Figure 7-1A: Pressure drop and 
ow speed through a channel. Overimposed pressure

boundary conditions between inlet and outlet. Compressible �nite di�erence method.

parabolic both at the inlet and the outlet (the total 
ux at the outlet is set equal to

the total 
ux at the inlet). The actual 
ow through the 
ue channel is measured by

sampling midway along the width of the 
ue channel and time-averaging. The velocity

pro�le inside the channel is parabolic so the horizontal velocity at the midpoint is

scaled by 2=3 to calculate the mean speed shown in table 7.1. We can see that the

actual 
ow is always larger than the imposed 
ow. This is because the imposed

pressure drop is an overestimate of the pressure drop corresponding to the imposed


ow through a channel 0:1 cm wide and 4 cm long. Speci�cally, the imposed pressure
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Figure 7-1B: Pressure drop and 
ow speed through a channel. Overimposed pressure
boundary conditions between inlet and outlet. Lattice Boltzmann method using

second-order di�erences at the boundary.

drop is equal to the Hagen-Poiseuille pressure drop of a channel whose length is 3:5

times the length of the 
ue channel; namely,

�P

�0
= �L

12�

d2
V = (3:5� 4:0)� 12 � 0:15

0:12
� V = 2500 � V (7.2)

where V is the mean velocity, �P is the pressure drop in gm=(cms2), �0 is the mean

density of air, and d and �L represent the channel's width and length.

The above pressure drop is much larger than necessary. The actual pressure drop

between the inlet and the outlet of the simulations of 
ue pipes is dominated by

the pressure drop along the narrow 
ue channel. Thus, it would su�ce to impose a

pressure drop equal to the Hagen-Poiseuille pressure drop of the 
ue channel. Due

to an oversight (see footnote of page 225B), the pressure drop was imposed 3:5 times

larger than necessary. However, an overestimated pressure drop does not cause any

serious problems in the simulations; it only produces a slightly larger 
ow than the

imposed 
ow as shown in table 7.1 and �gures 7-1A and 7-1B. In general, only an

order-of-magnitude estimate of the pressure drop is needed.



CHAPTER 7. MUSIC BY FLUE PIPES 225A

Figure 7-1C: Pressure drop and 
ow speed through a channel. Lattice Boltzmann
method using �rst-order di�erences at the boundary.

Figures 7-1A to 7-1C show the pressure drop and 
ow speed during steady state

in simulations of a channel which is 0:1 cm wide and 4 cm long. Both the density and

velocity are imposed at the inlet and outlet, and the walls are non-slip. The setup

is similar to the simulations of 
ue pipes except that only the channel is considered

here for simplicity. The grid is 401 � 11. The 
ow speed in the �gures is expressed

in cm/s and the pressure drop in c2s (� � �0)=�0 where �0 is the mean density of air,

and cs is the speed of sound. Both the pressure and the 
ow speed are sampled at

the midpoint and along the length of the 
ue channel (the speed at the midpoint is

scaled by 2=3 to calculate the mean speed because the velocity pro�le is parabolic).

Figure 7-1A corresponds to the compressible �nite di�erence method using �rst-

order di�erences at the boundary (section 3.3.4); and �gures 7-1B and 7-1C corre-

spond to the lattice Boltzmann method using second-order di�erences and �rst-order

di�erences at the boundary respectively. In �gures 7-1A and 7-1B we can see that

imposing a larger-than-necessary pressure drop between the inlet and outlet, simply

shifts the pressure �eld upwards (the curve becomes centered between the imposed
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pressure values). Further, we can see that a larger-than-necessary pressure drop

causes a slight increase of the 
ow through the channel. The change from the im-

posed boundary condition to the 
ow behavior inside the channel includes a ringing

e�ect which is more noticeable in the case of the compressible �nite di�erence method.

In �gure 7-1C, we see that the lattice Boltzmann method using �rst-order dif-

ferences at the boundary predicts a very di�erent pressure drop than the results of

�gures 7-1A and 7-1B. In fact, the pressure-gradient slope of �gure 7-1C is 3 times

larger than the pressure-gradient slopes of �gures 7-1A and 7-1B. It turns out that

the lattice Boltzmann method using �rst-order di�erences at the boundary is very

inaccurate with regard to the pressure drop, and overestimates the pressure drop by

a factor of 3 at the present resolution of 10 
uid nodes per width of the channel. By

contrast, the pressure drop of �gures 7-1A and 7-1B agrees within 2 decimal digits

with the correct value of Hagen-Poiseuille 
ow. 2

An important fact to mention is that I discovered the inaccurate prediction of

the pressure drop by the lattice Boltzmann method using �rst-order di�erences at

the boundary, after most of the simulations presented in my thesis had already been

performed. 3 Fortunately, the lattice Boltzmann simulations using �rst-order and

second-order di�erences at the boundary do not di�er greatly with regard to the

operation of the 
ue pipe; they only di�er with regard to the pressure drop inside the


ue channel. This fact was checked for a number of di�erent simulations. Because of

this fact and because of lack of time, the lattice Boltzmann simulations which were

performed using �rst-order di�erences, have not been repeated using second-order

di�erences at the boundary. Of course, second-order di�erences at the boundary are

recommended and should be used in the future.

2An explanation of the large error in pressure drop by the lattice Boltzmann method when using

�rst-order di�erences at the boundary must involve the Chapman-Enskog expansion of the extended

collision operator, and is left for future work.
3The overestimated pressure drop has been used as a boundary condition for all the simula-

tions (lattice Boltzmann method using �rst-order and second-order di�erences at the boundary, and

compressible �nite di�erence method).
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7.3.1 The end-correction of an open-end pipe

The rules mentioned in the previous section for the re
ection of acoustic waves can be

used to model an open-end pipe. Normally, an open-end pipe requires the simulation

of a very large region connected to the outside of the open-end pipe. To save on

computational e�ort, a shortcut can be made by imposing a �xed ambient pressure

at the end of the pipe, and calculating the velocity via extrapolation. This approach

re
ects acoustic waves in a similar way that a physical open-end pipe does. Section 7.5

presents simulations of an open-end soprano recorder using this approach.

An issue with the above approach is the end-correction of an open-end pipe

(Rayleigh [42, p.287], Olson [36, p.84]). In the physical world, the point where the

pressure equals the ambient pressure is not exactly the end of the pipe, but varies

depending on the diameter of the pipe and possibly on other factors as well. A re-

lated issue is that a speci�c amount of acoustic energy is radiated outwards during

re
ection from an open-end. This loss of acoustic energy may di�er between the

physical world and the simple model of clamping the pressure and extrapolating the

velocity. These are some of the di�culties which make the modeling of an open-end

pipe more di�cult than the modeling of a closed-end pipe, and should be addressed

in the future.

7.3.2 Smooth rise at startup

During the initial blowing of the air into the 
ue channel, the imposed density and

velocity at the inlet rise smoothly to �nal values within a speci�ed time interval. The

following formula is used both for the velocity and the density,

V (t) = V�nal

�
1 � 10� (t=T )2

�
(7.3)

where T is the rise time it takes to reach 90% of the �nal value. A rise time of 3 ms

is used in all the simulations presented here, which is relatively fast but not unusual

(Verge94 [57, 56], Hirschberg [26]).
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Figure 7-2: The rise of density and velocity inside the 
ue channel at startup.

Figure 7-2 shows the rise of the density and the velocity (x-component of velocity)

inside the 
ue channel during the initial blowing of air. These signals are obtained

from a lattice Boltzmann simulation of a closed-end recorder with a mean blowing

speed 1104 cm/s (same as �gure 1-16). The signals are sampled at the midpoint

inside the 
ue channel (maximum 
ow velocity) and at distance 0.961 cm from the

inlet. The density (shown as �0=�0) rises at a faster rate than the velocity because the


ow creates additional pressure during startup. The additional pressure is a reaction

of the stagnant air inside the channel to the incoming 
ow. After a time interval of

20�0:206 ms, both the pressure and the velocity reach �nal values approximately.

After 40�0:206 ms, the onset of periodic acoustic oscillations can be seen as well. The

acoustic oscillations are generated at the 
ue-labium region, and travel backwards into

the 
ue channel.
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7.4 Closed-end soprano recorder

This section presents further results on the simulations of the closed-end soprano

recorder described in section 1.4.

It is interesting that if we sample the acoustic signal (density variations) below

the labium, the fundamental mode is strongly diminished compared to sampling the

radiated signal outside the pipe. Most-likely, this is because the open end (
ue-labium

region) acts as a node for density oscillations, and an anti-node (loop) for velocity

oscillations. To be precise, the 
ue-labium region is actually driving the oscillations,

and thus it is somewhat di�erent from an exact node of a passive pipe. Nevertheless,

the 
ue-labium region behaves very much as an open end, and as a density node for the

fundamental frequency. The e�ect can be observed in the computer simulations both

for a closed-end recorder (open-closed pipe) and for an open-end recorder (open-open

pipe) described in section 7.5.

Figures 7-6 and 7-7 show the acoustic signal (density variations) from the lattice

Boltzmann simulation of a 20 cm closed-end recorder at blowing speed 1535 cm/s

(same plotting conventions as in section 1.4, �gure 7-6 is identical to �gure 1-17). Two

di�erent sampling locations are examined: the top graphs show the signal outside the

pipe and about 5 cm above the labium, the bottom graphs show the signal inside the

pipe and 1:34 cm below the labium (right on the bottom wall and 0:316 cm forwards

in the horizontal direction from the 
ue ori�ce). We can see that the fundamental

mode of 400 Hz is diminished in the bottom graphs where the signal is sampled below

the labium.

Another interesting observation regarding the signals sampled outside and inside

a pipe can be made in the case of blowing speed 818 cm/s. This is a situation where

the simulated 20 cm closed-end recorder fails to sing, probably because the outlet

region above the labium is small and con�ned versus in�nite in the physical world as

explained in section 1.4. The signals sampled outside and inside the pipe for blowing

speed 818 cm/s are shown in �gures 7-8 and 7-9 respectively (�gure 7-8 is the same
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as �gure 1-15 except for a longer interval of time). We can see that the density

oscillations outside the pipe diminish quickly after 100 �0:206 ms. However, there

are periodic density oscillations inside the pipe at the frequency of 820 Hz.

The oscillations at frequency 820 Hz are most likely edge tones (hydrodynamic

oscillations of the jet of air impinging the labium). It appears that the acoustic cou-

pling between the jet and the pipe breaks down, and there is no strong ampli�cation

of sound. The frequency of an edge tone is proportional to the blowing speed approx-

imately. Using the experimental equation 7.1 for edge tones, and putting W = 0:4 cm

for the distance between the ori�ce and the labium, we �nd f=V � 1 cm which agrees

with f � 820 Hz and V = 818 cm/s.

Another way of examining the oscillations at frequency 820 Hz is shown in �gure 7-

4 which plots iso-vorticity contours of the 
ue-labium region at 38.2 ms after startup

(blowing speed 818 cm/s). We can see that the jet oscillates at blowing speed 818 cm/s

even though little acoustic sound is produced by the recorder. However, the jet

oscillations are relatively small compared to other situations when there is a strong

acoustic signal. To compare, �gure 7-5 shows the jet oscillations at blowing velocity

1104 cm/s and 34.7 ms after startup. Now, the jet oscillations are much larger than

�gure 7-4, and the vortices do not align themselves into a stream of vortices above

the labium. The formation of a stream of vortices at blowing speed 818 cm/s is

most-likely related to the small blowing speed and the absence of strong acoustic

oscillations.

Figure 7-3 shows the jet oscillations of the 20 cm closed-end recorder at blowing

speed 818 cm/s and 11.7 ms after startup. The acoustic signal is still strong at this

time, the jet oscillations are large, and the shed vortices are not aligned into a stream

of vortices. This happens later, approximately 20 ms after startup.
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Figure 7-3: Simulation of 20 cm closed-end recorder, 11.7 ms after startup, blowing
speed 818 cm/s, iso-vorticity contours.
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Figure 7-4: Simulation of 20 cm closed-end recorder, 38.2 ms after startup, blowing

speed 818 cm/s, iso-vorticity contours. The jet oscillations are small and without
acoustic ampli�cation.

Figure 7-5: Simulation of 20 cm closed-end recorder, 34.7 ms after startup, blowing

speed 1104 cm/s, iso-vorticity contours. The jet oscillations are large and produce
strong acoustic waves.
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Figure 7-6: Lattice Boltzmann method, 20 cm closed-end soprano recorder, blowing
velocity 1535 cm/s, sampled 5 cm above labium.

Figure 7-7: Lattice Boltzmann method, 20 cm closed-end soprano recorder, blowing
velocity 1535 cm/s, sampled 1:34 cm below labium.
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Figure 7-8: Lattice Boltzmann method, 20 cm closed-end soprano recorder, blowing
velocity 818 cm/s, sampled 5 cm above labium.

Figure 7-9: Lattice Boltzmann method, 20 cm closed-end soprano recorder, blowing
velocity 818 cm/s, sampled 1:34 cm below labium. An edge tone perhaps occurs here.
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7.5 Open-end soprano recorder

An open-end version of the soprano recorder is examined here. The geometry is the

same as the one described in section 1.4 except for one di�erence. Here, the head

of the recorder is connected to a pipe which is open at the distant end. Also, the

total length of the pipe (including the head of the recorder) is chosen to be 22 cm

in the present experiments. The frequencies generated by the open-end recorder are

expected to be in ratios of 1 : 2 : 3 : 4 in contrast to the ratios 1 : 3 : 5 : 7 for a

closed-end recorder. An open-end recorder behaves like an open-open pipe because

there is one opening above the labium and another opening at the far end of the pipe.

The computer simulations of the 22 cm open-end recorder con�rm this behavior as

we shall see below.

The boundary conditions at the open-end pipe are set according the scheme de-

scribed in section 7.3; namely, the density is held constant (ambient pressure), and

the velocity is extrapolated from the nearest neighboring node in the horizontal di-

rection (normal to the open end). The boundary conditions at the inlet (
ue channel)

and the outlet (above the labium) are set in the same way as for a closed-end pipe;

namely, both the density and the incoming/outgoing velocity are imposed.

A complication arises with the balance of incoming 
ow and outgoing 
ow because

there is outgoing 
ow both through the top outlet and through the open-end pipe.

In the present simulations using the lattice Boltzmann method (�gures 7-13 and 7-

14), the imposed outgoing 
ow at the top outlet has been set equal to the imposed

incoming 
ow at the 
ue inlet. However, the imposed pressure drop has been set large

enough that the actual incoming 
ow through the 
ue channel is signi�cantly larger

than the imposed 
ow (similar idea as in table 7.1 of section 7.3). This produces

adequate incoming 
ow to balance both the 
ow through the top outlet and the 
ow

through the open-end pipe. Experimentally, it has been measured that the time-

average 
ow of air through the open-end pipe is about 1=10 of the incoming 
ow

through the 
ue channel, and that the remaining 9=10 of the incoming 
ow exits
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through the top outlet. In future simulations, it would be a good idea to set the

imposed in
ow at the inlet proportional to 10/10, and the imposed out
ow at the

outlet proportional to 9/10, so that 1/10 is left to 
ow through the open-end pipe. 4

Figures 7-13 and 7-14 show the acoustic signal from simulations of the 22 cm

open-end recorder sampled outside and inside the pipe. The major frequencies are

summarized in table 7.2. For comparison, physical measurements of the acoustic

signal of a 22 cm open-end recorder are shown in �gures 7-15 and 7-16 and table 7.3.

Table 7.4 lists the ideal frequencies of a passive pipe which is 22 cm long. The blowing

velocity was not measured in the physical experiments, but it is estimated that the

velocity was on the order of 1000-1500 cm/s (a human subject blew the recorder in

these measurements).

Figure 7-10 plots iso-vorticity contours of the 
ue-labium region 38.2 ms after

startup for the 22 cm open-end recorder at blowing speed 1197 cm/s. Comparing this

�gure against �gure 7-5 of a closed-end recorder, we see that the oscillations of the

jet extend inside the pipe in the case of an open-end recorder. Furthermore, large

vortices are shed inside the pipe (below the labium) as well as outside the pipe. This

behavior can also be seen in �gures 7-11 and 7-12 which show a sequence of frames of

the 
ue-labium region at 29:5 ms after startup. The frames are 0:2169 ms apart. The

top �gure shows the velocity vector �eld, and the bottom �gure shows iso-vorticity

contours. 5

4In the present simulation of the 22 cm open-end recorder, the imposed in
ux is 1080 cm/s and

imposed pressure drop is 6:48�106 gm=(cms2) divided by the mean density of air. The resulting

incoming 
ow is 1197 cm/s, and the resulting pressure drop is approximately 2:55�106 in the same

units as above. The resulting pressure drop is measured by examining the time-average density at

points near the inlet and the top outlet (about 1 cm away from the boundaries), and by measuring

the density gradient inside the 
ue channel to calculate the pressure drop along the full length of

the 
ue channel.
5The contours of �gure 7-12 are not as nice and smooth as the contours of, say, �gure 1-11 because

the present data was saved on disk at 4 times lower resolution than �gure 1-11.
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Vmean f0 (�0) A0 f1 (�1) A1 f2 (�2) A2 f3 (�3) A3

cm/s Hz (cm) 10�5 Hz (cm) 10�6 Hz (cm) 10�6 Hz (cm) 10�6

1197 1321 (26) 0:99 667 (52) 5:75 780 (44) 1:93 1512 (23) 1:84

Table 7.2: Frequencies, lattice Boltzmann, 22 cm open-end recorder

Vmean f0 (�0) A0 f1 (�1) A1 f2 (�2) A2 f3 (�3) A3

cm/s Hz (cm) 10�1 Hz (cm) 10�2 Hz (cm) 10�3 Hz (cm) 10�3

691 (50) 6:39 1381 (25) 2:24 2071 (17) 0:97 2761 (12) 0:468

Table 7.3: Frequencies, physical measurements, 22 cm open-end recorder

22 cmpipe f0 (�0) f1 (�1) f2 (�2) f3 (�3) f4 (�4)
Hz (cm) Hz (cm) Hz (cm) Hz (cm) Hz (cm)

open-closed 391 (88) 1173 (29) 1955 (18) 2736 (13) 3518 (10)
open-open 782 (44) 1564 (22) 2345 (14:7) 3127 (11) 3909 (8:8)

Table 7.4: Ideal resonant frequencies, 22 cm, open-closed and open-open.

Figure 7-10: Lattice Boltzmann simulation of 22 cm open-end recorder, 31:2 ms after

startup, blowing speed 1197 cm/s, iso-vorticity contours.
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Figure 7-11: Frames left to right 0:2169 ms apart, velocity vector �eld, 22 cm open-end
recorder, 29:5 ms after startup, blowing speed 1197 cm/s.

Figure 7-12: Frames left to right 0:2169 ms apart, iso-vorticity contours, 22 cm open-
end recorder, 29:5 ms after startup, blowing speed 1197 cm/s.
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Figure 7-13: Lattice Boltzmann method, 22 cm open-end soprano recorder, blowing
velocity 1197 cm/s, sampled 5 cm above the labium.

Figure 7-14: Lattice Boltzmann method, 22 cm open-end soprano recorder, blowing
velocity 1197 cm/s, sampled 1:34 cm below the labium.
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Figure 7-15: Physical measurements, 22 cm open-end recorder, steady state. Arbi-
trary units of amplitude.

Figure 7-16: Physical measurements, 22 cm open-end recorder, startup transient.



Chapter 8

Conclusion

8.1 What has been accomplished

After all the work is done, comes the point when we ask,

Are we any better o� than when we started ?

I think that the answer is \YES" in a number of ways. First, the big picture is that a

previously unexplored area of 
uid dynamics has succumbed to computer simulation.

Using parallel computing on a cluster of non-dedicated workstations, the �rst simu-

lations of hydrodynamics and acoustic waves inside wind musical instruments have

been performed. Further, the simulations are in reasonable agreement with physical

measurements of the acoustic signal of various 
ue pipes. Prior to my thesis, there

were doubts whether the simulation of 
ue pipes using the compressible Navier Stokes

equations is feasible. Some of the di�culties which seemed un-surmountable are the

following.

� Whether enough compute cycles can be found (very small integration time steps

must be used).

� Whether two-dozen non-dedicated workstations in my research group can be

harnessed to perform intensive parallel computing for days and weeks without

240
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disturbing the regular users.

� Whether the numerical stability problems (slow-growing high-frequency oscilla-

tions) which arise in simulations of subsonic compressible 
ow can be handled.

� Whether the lattice Boltzmann method (one of the numerical methods I use)

can work at all.

� Whether uniform grids can be successful in simulating the sharp edge (labium)

of a 
ue pipe.

My thesis has not found the best solutions to these problems, but has found some

good-enough solutions, and this is the �rst step.

The approach presented here can be easily applied to other problems. In particu-

lar, the numerical techniques of my thesis are generally applicable to any 
ow problem

of compressible subsonic 
ow. Also, the programming techniques and the organiza-

tion of my parallel simulation system on a cluster of non-dedicated workstations can

be applied to any problem that involves local-interactions and a static decomposi-

tion (vision problems, for example). My parallel system is very simple and e�ective

because the constraints of local and static problems have been fully exploited.

One of the messages of my thesis is that a cross-disciplinary approach is needed for

solving problems in scienti�c computing. The mathematics, the numerical modeling,

the parallelization, the low-level system implementation, the sharing of the worksta-

tions, the di�erent software abstractions and the representations of the problem, and

many other issues have all been considered together more-or-less in order to �nd good

e�ective solutions. In other words, my thesis promotes a generalist's approach.

Another message of my thesis is that explicit methods are very promising for paral-

lel computing. In the present simulations, there is a match between the requirements

of the problem (small time steps for subsonic compressible 
ow), the requirements of

explicit methods, and the requirements of the computer system (small communica-

tion capacity on a cluster of workstations). In general, however, explicit methods are
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desirable for parallel computing when increasing numbers of local processing units

are available with small communication capacity between the processing units. Per-

haps, future parallel computers will consist of millions of local processing units, each

unit having the power of one of today's workstations. Communication is going to

dominate the cost of such computers, and methods that minimize communication are

going to be desirable. A vision of such immense computers has guided many of the

approaches of my thesis.

Apart from the big picture, my thesis has also numerous detailed results to of-

fer. One result is the demonstration and the analysis of arti�cial-viscosity �lters for

mitigating the high-frequency instabilities of subsonic compressible 
ow. Another

numerical result is my work on the boundary conditions and the accuracy of the lat-

tice boltzmann method. With regard to distributed computing, the simple structure

of my program, and the automatic process migration are worth remembering. With

regard to the physics of musical instruments, the detailed pictures of the jet of air

oscillating inside a 
ue pipe are unique and very important for studying this complex

phenomenon.

Directions for future work are summarized below.

8.2 Ideas for future work

8.2.1 Physical Applications

� Someday soon, it may be possible for the computer to �nd reduced models of


ue pipes automatically (see section 7.2 for an introduction to reduced models of


ue pipes) by performing a few preliminary direct simulations of 
ue pipes, and

then examining the results. The present simulation system could be combined

with another \intelligent" program which knows about a number of possible

reduced models, and tries to �t the best model to the data.
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� The present simulations can be easily extended to include 
ue pipes with �nger

holes, and also pipes which are simple models for the human vocal tract. (see

Shadle [46] for a simple pipe that models the vocal tract).

� The present approach of simulating compressible subsonic 
uid dynamics has

applications in the design of oil and gas carrying pipes [37], and perhaps in

the study of medical issues such as the acoustic waves inside blood arteries and

non-intrusive measurements of arteriosclerosis [24], etc.

� New applications may arise in the future. For example, undulating jets of

burning fuel may be able to increase the e�ciency of a combustion engine. This

is a very distant idea at present, but it deserves some attention. Computer

simulations such as the ones presented here will be very important in such future

studies. The present simulations must be extended to model heat conduction

and two-phase 
ow.

8.2.2 Parallel computing

� We have seen that explicit methods are highly-suitable for parallel comput-

ing, but require very small time steps for stability. Between implicit methods

(full matrix equation) and explicit methods (local-interactions) there may exist

intermediate methods; for example, methods that use small matrices that do

not extend the full length of the numerical grid. Such methods might lead to

improved numerical stability while preserving the bene�ts of local-interaction

algorithms (see section 3.2).

� Uniform grids such as the ones employed here are very simple and work well,

but they are not very e�cient. Non-uniform grids are needed in order to focus

the computational power on regions where it is mostly needed such as sharp

obstacles. Unstructured non-uniform grids are very promising, and a lot of
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research is currently being done on them [6]. An interesting project is to try to

develop unstructured grids on a cluster of non-dedicated workstations.

8.2.3 Numerical analysis

� Section 5.5 raises some interesting questions regarding the relationship between

arti�cial-viscosity �lters, physical turbulence, and perhaps a kind of \discrete

turbulence" which is a property of systems of di�erence equations as opposed

to di�erential equations.

� There is a need to develop numerical conditions that approximate an in�nite

region at the outlet boundary (see section 7.3), and also suitable techniques that

remove the generated vorticity from the simulated region in order to continue

the simulations of 
ue pipes for inde�nitely long periods of time (see sections 1.4

and 7.3).

� A comprehensive theoretical analysis of the stability and the accuracy of the

lattice Boltzmann method is incomplete at the present time (see section 4.1.3).
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